Andrés R Schwember

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8072810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding, 2014, 34, 13-30.	1.0	146
2	Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. Journal of Experimental Botany, 2010, 61, 4423-4436.	2.4	104
3	Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. International Journal of Molecular Sciences, 2019, 20, 2644.	1.8	79
4	Carotenoid Pigment Content in Durum Wheat (Triticum turgidum L. var durum): An Overview of Quantitative Trait Loci and Candidate Genes. Frontiers in Plant Science, 2019, 10, 1347.	1.7	59
5	Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products. Food Chemistry, 2019, 290, 229-238.	4.2	59
6	Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules. Plants, 2019, 8, 333.	1.6	57
7	Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. International Journal of Molecular Sciences, 2018, 19, 3498.	1.8	52
8	A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures. Plant Molecular Biology, 2010, 73, 105-118.	2.0	41
9	Oxygen interacts with priming, moisture content and temperature to affect the longevity of lettuce and onion seeds. Seed Science Research, 2011, 21, 175-185.	0.8	36
10	Advances in breeding and biotechnology of legume crops. Plant Cell, Tissue and Organ Culture, 2016, 127, 561-584.	1.2	36
11	Identification of Lycopene epsilon cyclase (LCYE) gene mutants to potentially increase β-carotene content in durum wheat (Triticum turgidum L.ssp. durum) through TILLING. PLoS ONE, 2018, 13, e0208948.	1.1	27
12	Genotypic and environmental factors and their interactions determine semolina color of elite genotypes of durum wheat (Triticum turgidum L. var. durum) grown in different environments of Chile. Field Crops Research, 2013, 149, 234-244.	2.3	22
13	Drying Rates following Priming Affect Temperature Sensitivity of Germination and Longevity of Lettuce Seeds. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 778-781.	0.5	22
14	Unraveling agronomic and genetic aspects of runner bean (Phaseolus coccineus L.). Field Crops Research, 2017, 206, 86-94.	2.3	19
15	Susceptibility to Preharvest Sprouting of Chilean and Australian Elite Cultivars of Common Wheat. Crop Science, 2017, 57, 462-474.	0.8	18
16	Molecular Mapping and Genomics of Grain Yield in Durum Wheat: A Review. International Journal of Molecular Sciences, 2020, 21, 7021.	1.8	16
17	Association of phytoene synthase Psy1-A1 and Psy1-B1 allelic variants with semolina yellowness in durum wheat (Triticum turgidum L. var. durum). Euphytica, 2016, 207, 109-117.	0.6	14
18	A Comprehensive Review on Chickpea (Cicer arietinum L.) Breeding for Abiotic Stress Tolerance and Climate Change Resilience. International Journal of Molecular Sciences, 2022, 23, 6794.	1.8	14

#	Article	IF	CITATIONS
19	Phenolic-driven sensory changes in functional foods. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 5, 6-7.	2.4	9
20	Improving durum wheat (Triticum turgidum L. var durum) grain yellow pigment content through plant breeding. Ciencia E Investigacion Agraria, 2013, 40, 475-490.	0.2	8
21	Phytoene synthase 1 (Psy-1) and lipoxygenase 1 (Lpx-1) Genes Influence on Semolina Yellowness in Wheat Mediterranean Germplasm. International Journal of Molecular Sciences, 2020, 21, 4669.	1.8	8
22	An update on genetically modified crops. Ciencia E Investigacion Agraria, 2008, 35, .	0.2	7
23	Transcripts levels of Phytoene synthase 1 (Psy-1) are associated to semolina yellowness variation in durum wheat (Triticum turgidum L. ssp. durum). Journal of Cereal Science, 2016, 68, 155-163.	1.8	7
24	Do Flavonoids from Durum Wheat Contribute to Its Bioactive Properties? A Prospective Study. Molecules, 2021, 26, 463.	1.7	7
25	Soluble Free, Esterified and Insoluble-Bound Phenolic Antioxidants from Chickpeas Prevent Cytotoxicity in Human Hepatoma HuH-7 Cells Induced by Peroxyl Radicals. Antioxidants, 2022, 11, 1139.	2.2	7
26	New Findings in the Amino Acid Profile and Gene Expression in Contrasting Durum Wheat Gluten Strength Genotypes during Grain Filling. Journal of Agricultural and Food Chemistry, 2020, 68, 5521-5528.	2.4	5
27	Physiological and Yield Responses of Green-Shelled Beans (Phaseolus vulgaris L.) Grown under Restricted Irrigation. Agronomy, 2021, 11, 562.	1.3	4
28	Chickpeas from a Chilean Region Affected by a Climate-Related Catastrophe: Effects of Water Stress on Grain Yield and Flavonoid Composition. Molecules, 2022, 27, 691.	1.7	1