
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8071155/publications.pdf Version: 2024-02-01

RRUNO RONAZ

#	Article	IF	CITATIONS
1	Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology, 2021, 160, 99-114.e3.	1.3	913
2	The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in Neuroscience, 2018, 12, 49.	2.8	712
3	Brain-Gut Interactions in Inflammatory Bowel Disease. Gastroenterology, 2013, 144, 36-49.	1.3	512
4	Brain-gut-microbiota axis in Parkinson's disease. World Journal of Gastroenterology, 2015, 21, 10609.	3.3	438
5	Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts' Criteria. Nutrients, 2015, 7, 4966-4977.	4.1	423
6	Non-Celiac Gluten Sensitivity: The New Frontier of Gluten Related Disorders. Nutrients, 2013, 5, 3839-3853.	4.1	418
7	Chronic vagus nerve stimulation in Crohn's disease: a 6â€month followâ€up pilot study. Neurogastroenterology and Motility, 2016, 28, 948-953.	3.0	368
8	Antiâ€inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. Journal of Physiology, 2016, 594, 5781-5790.	2.9	334
9	Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. Journal of Clinical Investigation, 2007, 117, 33-40.	8.2	294
10	Vagus nerve stimulation: from epilepsy to the cholinergic antiâ€inflammatory pathway. Neurogastroenterology and Motility, 2013, 25, 208-221.	3.0	229
11	The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Frontiers in Immunology, 2017, 8, 1452.	4.8	222
12	Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Autonomic Neuroscience: Basic and Clinical, 2011, 160, 82-89.	2.8	218
13	The Overlapping Area of Non-Celiac Gluten Sensitivity (NCGS) and Wheat-Sensitive Irritable Bowel Syndrome (IBS): An Update. Nutrients, 2017, 9, 1268.	4.1	177
14	Effectiveness and Safety of Vedolizumab Induction Therapy forÂPatients With Inflammatory Bowel Disease. Clinical Gastroenterology and Hepatology, 2016, 14, 1593-1601.e2.	4.4	168
15	Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology, 2010, 35, 653-662.	2.7	157
16	Relationship between Vagal Tone, Cortisol, TNF-Alpha, Epinephrine and Negative Affects in Crohn's Disease and Irritable Bowel Syndrome. PLoS ONE, 2014, 9, e105328.	2.5	152
17	Central Processing of Rectal Pain in Patients With Irritable Bowel Syndrome: An Fmri Study. American Journal of Gastroenterology, 2002, 97, 654-661.	0.4	147
18	Water-avoidance stress-inducedc-fos expression in the rat brain and stimulation of fecal output: role of corticotropin-releasing factor. Brain Research, 1994, 641, 21-28.	2.2	144

#	Article	IF	CITATIONS
19	Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. Journal of Internal Medicine, 2017, 282, 46-63.	6.0	124
20	Diseases, Disorders, and Comorbidities of Interoception. Trends in Neurosciences, 2021, 44, 39-51.	8.6	112
21	Irritable bowel syndrome: a model of the brain-gut interactions. Medical Science Monitor, 2004, 10, RA55-62.	1.1	96
22	Gastric Electrical Stimulation Reduces Refractory Vomiting in a Randomized Crossover Trial. Gastroenterology, 2020, 158, 506-514.e2.	1.3	94
23	Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterology and Motility, 2016, 28, 455-462.	3.0	91
24	Factors associated with pregnancy outcome in antiâ€ <scp>TNF</scp> treated women with inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2014, 40, 363-373.	3.7	82
25	Natural history of acute colonic diverticular bleeding: a prospective study in 133 consecutive patients. Alimentary Pharmacology and Therapeutics, 2010, 32, 466-471.	3.7	80
26	High Risk of Anal and Rectal Cancer in Patients With Anal and/or Perianal Crohn's Disease. Clinical Gastroenterology and Hepatology, 2018, 16, 892-899.e2.	4.4	80
27	A 12â€month pilot study outcomes of vagus nerve stimulation in Crohn's disease. Neurogastroenterology and Motility, 2020, 32, e13911.	3.0	76
28	Risk Factors Associated With Small Bowel Adenocarcinoma in Crohn's Disease: A CaseControl Study. American Journal of Gastroenterology, 2008, 103, 1730-1736.	0.4	72
29	Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Frontiers in Neuroscience, 2021, 15, 650971.	2.8	72
30	Vagus Nerve Stimulation at the Interface of Brain–Gut Interactions. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034199.	6.2	67
31	Abdominal surgery induces Fos immunoreactivity in the rat brain. Journal of Comparative Neurology, 1994, 349, 212-222.	1.6	59
32	The Place of Stress and Emotions in the Irritable Bowel Syndrome. Vitamins and Hormones, 2017, 103, 327-354.	1.7	57
33	Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation. NeuroImage, 2010, 52, 1456-1464.	4.2	53
34	Expression and effects of metabotropic CRF ₁ and CRF ₂ receptors in rat small intestine. American Journal of Physiology - Renal Physiology, 2005, 288, G1091-G1103.	3.4	52
35	Corticotropin-releasing factor and systemic capsaicin-sensitive afferents are involved in abdominal surgery-induced Fos expression in the paraventricular nucleus of the hypothalamus. Brain Research, 1997, 748, 12-20.	2.2	51
36	Peripheral bombesin induces c-fos protein in the rat brain. Brain Research, 1993, 600, 353-357.	2.2	48

#	Article	IF	CITATIONS
37	Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system — A fMRI study in healthy volunteers. NeuroImage, 2015, 107, 10-22.	4.2	47
38	Targeting the cholinergic anti-inflammatory pathway with vagus nerve stimulation in patients with Covid-19?. Bioelectronic Medicine, 2020, 6, 15.	2.3	45
39	A multiplex liquid chromatography tandem mass spectrometry method for the quantification of seven therapeutic monoclonal antibodies: Application for adalimumab therapeutic drug monitoring in patients with Crohn's disease. Analytica Chimica Acta, 2019, 1067, 63-70.	5.4	44
40	Brain responses to uncertainty about upcoming rectal discomfort in quiescent Crohn's disease – a <scp>fMRI</scp> study. Neurogastroenterology and Motility, 2016, 28, 1419-1432.	3.0	40
41	Urinary leukotriene E4 excretion: A biomarker of inflammatory bowel disease activity. Inflammatory Bowel Diseases, 2008, 14, 769-774.	1.9	38
42	Fedotozine, a kappa-opioid agonist, prevents spinal and supra-spinal Fos expression induced by a noxious visceral stimulus in the rat. Neurogastroenterology and Motility, 2000, 12, 135-147.	3.0	37
43	Brain mapping of digestive sensations elicited by cortical electrical stimulations. Neurogastroenterology and Motility, 2008, 20, 588-596.	3.0	37
44	Long Term Effects of Low Frequency (10ÂHz) Vagus Nerve Stimulation on EEG and Heart Rate Variability in Crohn's Disease: A Case Report. Brain Stimulation, 2014, 7, 914-916.	1.6	35
45	Safety and Efficacy of Granulocyte/Monocyte Apheresis in Steroid-Dependent Active Ulcerative Colitis with Insufficient Response or Intolerance to Immunosuppressants and/or Biologics [the ART Trial]: 12-week Interim Results. Journal of Crohn's and Colitis, 2016, 10, 812-820.	1.3	35
46	Occurrence of the Synthetic Analgesic Tramadol in an African Medicinal Plant. Angewandte Chemie - International Edition, 2013, 52, 11780-11784.	13.8	34
47	Endogenous expression and in vitro study of CRF-related peptides and CRF receptors in the rat gastric antrum. Peptides, 2006, 27, 1464-1475.	2.4	32
48	The Cholinergic Anti-Inflammatory Pathway and the Gastrointestinal Tract. Gastroenterology, 2007, 133, 1370-1373.	1.3	32
49	Inflammatory bowel diseases: a dysfunction of brain-gut interactions?. Minerva Gastroenterologica E Dietologica, 2013, 59, 241-59.	2.2	31
50	Infliximab quantitation in human plasma by liquid chromatography-tandem mass spectrometry: towards a standardization of the methods?. Analytical and Bioanalytical Chemistry, 2017, 409, 1195-1205.	3.7	30
51	Is-there a place for vagus nerve stimulation in inflammatory bowel diseases?. Bioelectronic Medicine, 2018, 4, 4.	2.3	30
52	Electroencephalographic correlates of low-frequency vagus nerve stimulation therapy for Crohn's disease. Clinical Neurophysiology, 2018, 129, 1041-1046.	1.5	29
53	Neuronal activity and CRF receptor gene transcription in the brains of rats with colitis. American Journal of Physiology - Renal Physiology, 2004, 287, G803-G814.	3.4	26
54	The link between negative affect, vagal tone, and visceral sensitivity in quiescent <scp>C</scp> rohn's disease. Neurogastroenterology and Motility, 2014, 26, 1200-1203.	3.0	24

#	Article	IF	CITATIONS
55	Nauclea latifolia Smith (Rubiaceae) exerts antinociceptive effects in neuropathic pain induced by chronic constriction injury of the sciatic nerve. Journal of Ethnopharmacology, 2014, 151, 445-451.	4.1	21
56	Emotional overactivity in patients with irritable bowel syndrome. Neurogastroenterology and Motility, 2018, 30, e13387.	3.0	20
57	CRF2 Signaling Is a Novel Regulator of Cellular Adhesion and Migration in Colorectal Cancer Cells. PLoS ONE, 2013, 8, e79335.	2.5	18
58	Enterocytic differentiation is modulated by lipid rafts-dependent assembly of adherens junctions. Experimental Cell Research, 2011, 317, 1422-1436.	2.6	17
59	Interoceptive Abilities in Inflammatory Bowel Diseases and Irritable Bowel Syndrome. Frontiers in Psychiatry, 2020, 11, 229.	2.6	16
60	Involvement of CRF2 signaling in enterocyte differentiation. World Journal of Gastroenterology, 2017, 23, 5127.	3.3	14
61	Role of Cholinergic Receptors in Colorectal Cancer: Potential Therapeutic Implications of Vagus Nerve Stimulation?. Journal of Cancer Therapy, 2013, 04, 1116-1131.	0.4	14
62	Transcutaneous auricular vagus nerve stimulation for the treatment of irritable bowel syndrome: a pilot, open-label study. Bioelectronics in Medicine, 2020, 3, 5-12.	2.0	13
63	Effect of nor-trimebutine on neuronal activation induced by a noxious stimulus or an acute colonic inflammation in the rat. Life Sciences, 2005, 77, 2927-2941.	4.3	12
64	Renal sarcoid-like granulomatosis during anti-TNF therapy. Kidney International, 2014, 86, 215.	5.2	12
65	Granulocyte/monocyte adsorptive apheresis for the treatment of therapy-refractory chronic active ulcerative colitis. Scandinavian Journal of Gastroenterology, 2018, 53, 442-448.	1.5	12
66	Long-Term Therapy With Bevacizumab in a Patient With Glanzmann's Thrombasthenia and Recurrent Digestive Bleeding due to Gastrointestinal Angiodysplastic Lesions. American Journal of Gastroenterology, 2015, 110, 352-353.	0.4	11
67	Impact of Gastric Electrical Stimulation on Economic Burden of Refractory Vomiting: A French Nationwide Multicentre Study. Clinical Gastroenterology and Hepatology, 2022, 20, 1857-1866.e1.	4.4	10
68	Expectations of IBS patients concerning disease and healthcare providers: Results of a prospective survey among members of a French patients' association. Clinics and Research in Hepatology and Gastroenterology, 2020, 44, 961-967.	1.5	10
69	Parameters matter: modulating cytokines using nerve stimulation. Bioelectronic Medicine, 2020, 6, 12.	2.3	8
70	A crosstalk between muscarinic and CRF2 receptors regulates cellular adhesion properties of human colon cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1246-1259.	4.1	6
71	New steps in infliximab therapeutic drug monitoring in patients with inflammatory bowel diseases. British Journal of Clinical Pharmacology, 2019, 85, 722-728.	2.4	6
72	Autonomic Dysfunction: A Predictive Factor of Risk to Develop Rheumatoid Arthritis?. EBioMedicine, 2016, 6, 20-21.	6.1	5

0

#	Article	IF	CITATIONS
73	The role of nicotinic receptors in SARS-CoV-2 receptor ACE2 expression in intestinal epithelia. Bioelectronic Medicine, 2020, 6, 20.	2.3	5
74	The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms― current progress, challenges, and charting the future. Bioelectronic Medicine, 2021, 7, 7.	2.3	5
75	Multifocal polyclonal Epstein–Barr virus-associated B-cell lymphoproliferative disorder secondary to azathioprine therapy successfully treated with rituximab. Leukemia and Lymphoma, 2010, 51, 174-177.	1.3	4
76	The Irritable Bowel Syndrome: How Stress Can Affect the Amygdala Activity and the Brain-Gut Axis. , 0, , .		4
77	Toward a Definition of a Global Psycho-Physiological Criterion of Vulnerability to Relapse in Inflammatory Bowel Diseases. American Journal of Gastroenterology, 2010, 105, 1446-1447.	0.4	3
78	The vagus nerve and the sympathetic nervous system act in concert to modulate immunity. Brain, Behavior, and Immunity, 2020, 84, 6-7.	4.1	3
79	Abnormal brain microstructure in patients with chronic pancreatitis. Gut, 2011, 60, 1445-1446.	12.1	2
80	Stress and the Gastrointestinal System. , 2016, , 123-156.		2
81	Comment on a Retraction. American Journal of Gastroenterology, 2009, 104, 1334-1334.	0.4	1
82	Mon cerveau et mon intestin communiquent, parfois malÂ!. Pratique Neurologique - FMC, 2013, 4, 240-257.	0.1	1
83	Uncoupling between the vagal tone and HPA axis in patients with Crohn's disease or irritable bowel syndrome: Relation to stress and inflammation. Autonomic Neuroscience: Basic and Clinical, 2013, 177, 315-316.	2.8	1
84	P299 Vagus nerve stimulation in Crohn's disease. Journal of Crohn's and Colitis, 2014, 8, S188-S189.	1.3	1
85	DOP050 Influence of disease location on vedolizumab efficacy in inflammatory bowel disease: a real-life multicentre experience. Journal of Crohn's and Colitis, 2018, 12, S065-S066.	1.3	1
86	Vagus nerve stimulation and the cholinergic anti-inflammatory pathway: A potential new therapeutic approach in inflammatory bowel diseases. Autonomic Neuroscience: Basic and Clinical, 2013, 177, 307.	2.8	0
87	P500 Efficacy and safety of granulocyte, monocyte/macrophage adsorptive apheresis in steroid-dependent active UC with insufficient response or intolerance to immunosuppressants and/or biological therapies (the ART trial): Results at 12 weeks. Journal of Crohn's and Colitis, 2014, 8, S276.	1.3	0
88	Therapeutic implications of vagus nerve stimulation. Autonomic Neuroscience: Basic and Clinical, 2015, 192, 8-9.	2.8	0
89	Electrical vagus nerve stimulation as an innovative treatment in inflammatory bowel diseases. Autonomic Neuroscience: Basic and Clinical, 2015, 192, 62.	2.8	0

90 VNS for the Treatment of Inflammatory Disorders of the Gastrointestinal Tract. , 2017, , 205-230.

#	Article	IF	CITATIONS
91	P780 Interchangeability by a biosimilar of infliximab: What do patients think?. Journal of Crohn's and Colitis, 2018, 12, S504-S505.	1.3	Ο
92	P507 What is the impact of infliximab metaoptimisation on surgical rates and need-to-change-therapy in real-world practice for severe inflammatory bowel disease?. Journal of Crohn's and Colitis, 2018, 12, S361-S362.	1.3	0
93	Intéròt de l'hypnose dans la prise en charge du syndrome de l'intestin irritable. HEGEL - HEpato-GastroEntérologie Libérale, 2014, NA° 4, 432-433.	0.0	Ο
94	Le ventre, miroir de nos angoisses. , 2016, Nº 76, 40-46.		0
95	Propriétés anti-inflammatoires du nerf vagueÂ: implications thérapeutiques en gastroentérologie. HEGEL - HEpato-GastroEntérologie Libérale, 2015, N° 3, 173-179.	0.0	Ο