Antonio Ranieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/807099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of CytochromecRedox Potential:Â Axial Ligation and Protein Environment Effects. Journal of the American Chemical Society, 2002, 124, 5315-5324.	6.6	191
2	Redox Thermodynamics of the Fe3+/Fe2+Couple in Horseradish Peroxidase and Its Cyanide Complex. Journal of the American Chemical Society, 2002, 124, 26-27.	6.6	63
3	Control of Metalloprotein Reduction Potential:Â Compensation Phenomena in the Reduction Thermodynamics of Blue Copper Proteinsâ€. Biochemistry, 2003, 42, 9214-9220.	1.2	58
4	The Reorganization Energy in Cytochrome c is Controlled by the Accessibility of the Heme to the Solvent. Journal of Physical Chemistry Letters, 2011, 2, 1761-1765.	2.1	57
5	The Redox Chemistry of the Covalently Immobilized Native and Low-pH Forms of Yeast Iso-1-cytochromec. Journal of the American Chemical Society, 2006, 128, 5444-5451.	6.6	54
6	Electron Transfer Properties and Hydrogen Peroxide Electrocatalysis of Cytochrome <i>c</i> Variants at Positions 67 and 80. Journal of Physical Chemistry B, 2010, 114, 1698-1706.	1.2	43
7	Enthalpy/entropy compensation phenomena in the reduction thermodynamics of electron transport metalloproteins. Journal of Biological Inorganic Chemistry, 2004, 9, 23-26.	1.1	42
8	Electron Transfer and Electrocatalytic Properties of the Immobilized Methionine80Alanine Cytochrome <i>c</i> Variant. Journal of Physical Chemistry B, 2008, 112, 1555-1563.	1.2	39
9	Effects of Mutational (Lys to Ala) Surface Charge Changes on the Redox Properties of Electrode-Immobilized Cytochrome c. Journal of Physical Chemistry B, 2007, 111, 10281-10287.	1.2	37
10	Free Energy of Transition for the Individual Alkaline Conformers of Yeast Iso-1-cytochromecâ€,‡. Biochemistry, 2007, 46, 1694-1702.	1.2	36
11	Understanding the Mechanism of Short-Range Electron Transfer Using an Immobilized Cupredoxin. Journal of the American Chemical Society, 2012, 134, 11848-11851.	6.6	34
12	Voltammetric and Surface-Enhanced Resonance Raman Spectroscopic Characterization of CytochromecAdsorbed on a 4-Mercaptopyridine Monolayer on Silver Electrodes. Langmuir, 2007, 23, 4340-4345.	1.6	33
13	Thermodynamics of the Acid Transition in Blue Copper Proteinsâ€. Biochemistry, 2002, 41, 14293-14298.	1.2	32
14	Solvent-based deuterium isotope effects on the redox thermodynamics of cytochrome c. Journal of Biological Inorganic Chemistry, 2004, 9, 781-787.	1.1	32
15	Catalytic Reduction of Dioxygen and Nitrite Ion at a Met80Ala Cytochrome <i>c</i> -Functionalized Electrode. Journal of the American Chemical Society, 2008, 130, 15099-15104.	6.6	31
16	A bis-histidine-ligated unfolded cytochrome c immobilized on anionic SAM shows pseudo-peroxidase activity. Electrochemistry Communications, 2012, 14, 29-31.	2.3	31
17	pH-Induced Changes in Adsorbed Cytochrome <i>c</i> . Voltammetric and Surface-Enhanced Resonance Raman Characterization Performed Simultaneously at Chemically Modified Silver Electrodes. Langmuir, 2007, 23, 9898-9904.	1.6	30
18	The impact of urea-induced unfolding on the redox process of immobilised cytochrome c. Journal of Biological Inorganic Chemistry, 2010, 15, 1233-1242.	1.1	30

ANTONIO RANIERI

#	Article	IF	CITATIONS
19	Towards Combined Electrochemistry and Surface-Enhanced Resonance Raman of Heme Proteins:Â Improvement of Diffusion Electrochemistry of Cytochromecat Silver Electrodes Chemically Modified with 4-Mercaptopyridine. Analytical Chemistry, 2006, 78, 5622-5625.	3.2	28
20	Redox and Electrocatalytic Properties of Mimochrome VI, a Synthetic Heme Peptide Adsorbed on Gold. Langmuir, 2010, 26, 17831-17835.	1.6	27
21	Electrochemical Response of Cytochrome <i>c</i> Immobilized on Smooth and Roughened Silver and Gold Surfaces Chemically Modified with 11-Mercaptounodecanoic Acid. Journal of Physical Chemistry C, 2009, 113, 2861-2866.	1.5	26
22	Immobilized cytochrome c bound to cardiolipin exhibits peculiar oxidation state-dependent axial heme ligation and catalytically reduces dioxygen. Journal of Biological Inorganic Chemistry, 2015, 20, 531-540.	1.1	26
23	A surface-immobilized cytochrome c variant provides a pH-controlled molecular switch. Chemical Science, 2012, 3, 807-810.	3.7	25
24	The Active Site Loop Modulates the Reorganization Energy of Blue Copper Proteins by Controlling the Dynamic Interplay with Solvent. Journal of Physical Chemistry Letters, 2013, 4, 710-715.	2.1	25
25	Redox properties and acid–base equilibria of zucchini mavicyanin. Journal of Inorganic Biochemistry, 2001, 83, 223-227.	1.5	24
26	Ligand Loop Effects on the Free Energy Change of Redox and pH-Dependent Equilibria in Cupredoxins Probed on Amicyanin Variants. Biochemistry, 2005, 44, 9944-9949.	1.2	24
27	Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study. Electrochimica Acta, 2011, 56, 6925-6931.	2.6	24
28	Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species. Journal of Biological Inorganic Chemistry, 2017, 22, 615-623.	1.1	24
29	Axial ligation and polypeptide matrix effects on the reduction potential of heme proteins probed on their cyanide adducts. Journal of Biological Inorganic Chemistry, 2005, 10, 643-651.	1.1	22
30	Protonation of a Histidine Copper Ligand in Fern Plastocyanin. Journal of the American Chemical Society, 2007, 129, 4423-4429.	6.6	22
31	Thermodynamic and kinetic aspects of the electron transfer reaction of bovine cytochrome c immobilized on 4-mercaptopyridine and 11-mercapto-1-undecanoic acid films. Journal of Applied Electrochemistry, 2008, 38, 885-891.	1.5	20
32	Conservation of the free energy change of the alkaline isomerization in mitochondrial and bacterial cytochromes c. Archives of Biochemistry and Biophysics, 2002, 404, 227-233.	1.4	19
33	Redox thermodynamics of cytochrome c adsorbed on mercaptoundecanol monolayer electrodes. Journal of Electroanalytical Chemistry, 2004, 564, 45-52.	1.9	19
34	Factors Affecting the Electron Transfer Properties of an Immobilized Cupredoxin. Journal of Physical Chemistry C, 2010, 114, 22322-22329.	1.5	19
35	Heterogeneous Electron Transfer of a Two-Centered Heme Protein: Redox and Electrocatalytic Properties of Surface-Immobilized Cytochrome c4. Journal of Physical Chemistry B, 2009, 113, 13645-13653.	1.2	18
36	pH-Dependent Peroxidase Activity of Yeast Cytochrome <i>c</i> and Its Triple Mutant Adsorbed on Kaolinite. Langmuir, 2011, 27, 10683-10690.	1.6	18

ANTONIO RANIERI

#	Article	IF	CITATIONS
37	Thermodynamic Aspects of the Adsorption of Cytochromecand its Mutants on Kaolinite. Langmuir, 2009, 25, 6849-6855.	1.6	17
38	Effect of motional restriction on the unfolding properties of a cytochrome c featuring a His/Met–His/His ligation switch. Metallomics, 2014, 6, 874.	1.0	16
39	Filling the Gap in Extended Metal Atom Chains: Ferromagnetic Interactions in a Tetrairon(II) String Supported by Oligo-α-pyridylamido Ligands. Inorganic Chemistry, 2018, 57, 5438-5448.	1.9	16
40	Thermodynamics and kinetics of the electron transfer process of spinach plastocyanin adsorbed on a modified gold electrode. Journal of Electroanalytical Chemistry, 2009, 626, 123-129.	1.9	14
41	pH and Solvent H/D Isotope Effects on the Thermodynamics and Kinetics of Electron Transfer for Electrode-Immobilized Native and Urea-Unfolded Stellacyanin. Langmuir, 2012, 28, 15087-15094.	1.6	14
42	Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts. Electrochimica Acta, 2015, 176, 1019-1028.	2.6	14
43	The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coordination Chemistry Reviews, 2021, 445, 214071.	9.5	14
44	Redox thermodynamics of cytochromes c subjected to urea induced unfolding. Journal of Applied Electrochemistry, 2009, 39, 2181-2190.	1.5	13
45	The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin. Journal of Inorganic Biochemistry, 2018, 178, 70-86.	1.5	13
46	Adsorbing surface strongly influences the pseudoperoxidase and nitrite reductase activity of electrode-bound yeast cytochrome c. The effect of hydrophobic immobilization. Bioelectrochemistry, 2020, 136, 107628.	2.4	13
47	Effects of Specific Anion-Protein Binding on the Alkaline Transition of Cytochrome c. Archives of Biochemistry and Biophysics, 2001, 386, 117-122.	1.4	12
48	Protein stability and mutations in the axial methionine loop of a minimal cytochrome c. Journal of Biological Inorganic Chemistry, 2004, 9, 600-608.	1.1	12
49	Axial iron coordination and spin state change in a heme c upon electrostatic protein–SAM interaction. Physical Chemistry Chemical Physics, 2013, 15, 13499.	1.3	12
50	Electrocatalytic Properties of Immobilized Heme Proteins: Basic Principles and Applications. ChemElectroChem, 2019, 6, 5172-5185.	1.7	12
51	Binding of S. cerevisiae iso-1 cytochrome c and its surface lysine-to-alanine variants to cardiolipin: charge effects and the role of the lipid to protein ratio. Journal of Biological Inorganic Chemistry, 2020, 25, 467-487.	1.1	12
52	Immobilized unfolded cytochrome c acts as a catalyst for dioxygen reduction. Chemical Communications, 2011, 47, 11122.	2.2	11
53	The Met80Ala point mutation enhances the peroxidase activity of immobilized cytochrome c. Catalysis Science and Technology, 2012, 2, 2206.	2.1	11
54	Urea-induced denaturation of immobilized yeast iso-1 cytochrome c: Role of Met80 and Tyr67 in the thermodynamics of unfolding and promotion of pseudoperoxidase and nitrite reductase activities. Electrochimica Acta, 2020, 363, 137237.	2.6	11

ANTONIO RANIERI

#	Article	IF	CITATIONS
55	Cloning, expression and physicochemical characterization of a di-heme cytochrome c 4 from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125. Journal of Biological Inorganic Chemistry, 2008, 13, 789-799.	1.1	10
56	Tetrairon(<scp>ii</scp>) extended metal atom chains as single-molecule magnets. Dalton Transactions, 2021, 50, 7571-7589.	1.6	10
57	Active site loop dictates the thermodynamics of reduction and ligand protonation in cupredoxins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 995-1000.	1.1	8
58	Enhancing Biocatalysis: The Case of Unfolded Cytochromeâ€ <i>c</i> Immobilized on Kaolinite. ChemCatChem, 2013, 5, 1765-1768.	1.8	8
59	Electrostatic Effects on the Thermodynamics of Protonation of Reduced Plastocyanin. ChemBioChem, 2005, 6, 692-696.	1.3	7
60	Met80 and Tyr67 affect the chemical unfolding of yeast cytochrome <i>c</i> : comparing the solution <i>vs.</i> immobilized state. RSC Chemical Biology, 2020, 1, 421-435.	2.0	5
61	Selfâ€Assembled Structures from Solid Cadmium(II) Acetate in Thiol/Ethanol Solutions: A Novel Type of Organic Chemical Garden. ChemSystemsChem, 2021, 3, e2000048.	1.1	5
62	Excitation-Energy Transfer Paths from Tryptophans to Coordinated Copper Ions in Engineered Azurins: a Source of Observables for Monitoring Protein Structural Changes. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1329-1349.	1.4	4
63	Electron Transfer and Electrocatalytic Properties of the Immobilized Met80Ala Cytochrome <i>c</i> Variant in Dimethylsulfoxide. ChemElectroChem, 2021, 8, 2115-2123.	1.7	4
64	How to Turn an Electron Transfer Protein into a Redox Enzyme for Biosensing. Molecules, 2021, 26, 4950.	1.7	4
65	Solvent tunes the peroxidase activity of cytochrome c immobilized on kaolinite. Applied Clay Science, 2015, 118, 316-324.	2.6	1
66	The Copper Chemical Garden as a Low Cost and Efficient Material for Breaking Down Air Pollution by Gaseous Ammonia. ChemSystemsChem, 0, , e2100034.	1.1	1
67	Role of the solvent in the oxidative process of a Hg electrode in the presence of thiopyrimidine derivatives. Canadian Journal of Chemistry, 2005, 83, 1132-1136.	0.6	0