Maria Carla Bosco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8070605/publications.pdf

Version: 2024-02-01

69 papers

2,973 citations

30 h-index 53 g-index

72 all docs

72 docs citations

72 times ranked

4555 citing authors

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Translational Medicine, 2017, 6, 1018-1028.	1.6	399
2	Hypoxia downregulates the expression of activating receptors involved in ⟨scp⟩NK⟨/scp⟩â€cellâ€mediated target cell killing without affecting ⟨scp⟩ADCC⟨/scp⟩. European Journal of Immunology, 2013, 43, 2756-2764.	1.6	210
3	Regulation of Human Macrophage M1–M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1. Frontiers in Immunology, 2017, 8, 1097.	2.2	208
4	Hypoxia Modifies the Transcriptome of Primary Human Monocytes: Modulation of Novel Immune-Related Genes and Identification Of CC-Chemokine Ligand 20 as a New Hypoxia-Inducible Gene. Journal of Immunology, 2006, 177, 1941-1955.	0.4	189
5	Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Immunobiology, 2008, 213, 733-749.	0.8	138
6	Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood, 2011, 117, 2625-2639.	0.6	119
7	The Tryptophan Catabolite Picolinic Acid Selectively Induces the Chemokines Macrophage Inflammatory Protein- $1\hat{l}$ ± and $-1\hat{l}$ 2 in Macrophages. Journal of Immunology, 2000, 164, 3283-3291.	0.4	108
8	Hypoxia Modifies the Transcriptome of Human NK Cells, Modulates Their Immunoregulatory Profile, and Influences NK Cell Subset Migration. Frontiers in Immunology, 2018, 9, 2358.	2.2	104
9	Inhibition of tumor growth and enhancement of metastasis after transfection of the \hat{I}^3 -interferon gene. International Journal of Cancer, 1993, 55, 320-329.	2.3	89
10	Hypoxia Selectively Inhibits Monocyte Chemoattractant Protein-1 Production by Macrophages. Journal of Immunology, 2004, 172, 1681-1690.	0.4	84
11	Interleukin-2 and human monocyte activation. Journal of Leukocyte Biology, 1995, 57, 13-19.	1.5	76
12	Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-11± and -21±. Molecular Cancer Therapeutics, 2008, 7, 1974-1984.	1.9	73
13	The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells. Immunobiology, 2013, 218, 76-89.	0.8	59
14	Hypoxia inhibits the expression of the CCR5 chemokine receptor in macrophages. Cellular Immunology, 2004, 228, 1-7.	1.4	57
15	The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity. Scientific Reports, 2016, 6, 29994.	1.6	52
16	Disruption by interferon-alpha of an autocrine interleukin-6 growth loop in IL-6-dependent U266 myeloma cells by homologous and heterologous down-regulation of the IL-6 receptor alpha- and beta-chains Journal of Clinical Investigation, 1994, 94, 2317-2325.	3.9	52
17	Engineering of Macrophages to Produce IFN- \hat{l}^3 in Response to Hypoxia. Journal of Immunology, 2001, 166, 5374-5380.	0.4	49
18	Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and <scp>TREM</scp> â€l expression. European Journal of Immunology, 2013, 43, 949-966.	1.6	49

#	Article	IF	Citations
19	Hypoxia transcriptionally induces macrophage-inflammatory protein-3α/CCL-20 in primary human mononuclear phagocytes through nuclear factor (NF)-κB. Journal of Leukocyte Biology, 2008, 83, 648-662.	1.5	46
20	Flavopiridol inhibits vascular endothelial growth factor production induced by hypoxia or picolinic acid in human neuroblastoma. International Journal of Cancer, 2002, 99, 658-664.	2.3	45
21	Exosomal microRNAs from Longitudinal Liquid Biopsies for the Prediction of Response to Induction Chemotherapy in High-Risk Neuroblastoma Patients: A Proof of Concept SIOPEN Study. Cancers, 2019, 11, 1476.	1.7	43
22	Macrophage polarization: Reaching across the aisle?. Journal of Allergy and Clinical Immunology, 2019, 143, 1348-1350.	1.5	42
23	Targeting hypoxia in tumor: a new promising therapeutic strategy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 8.	3.5	38
24	Hypoxia Predicts Poor Prognosis in Neuroblastoma Patients and Associates with Biological Mechanisms Involved in Telomerase Activation and Tumor Microenvironment Reprogramming. Cancers, 2020, 12, 2343.	1.7	36
25	Therapeutic Potential of Targeting TREM-1 in Inflammatory Diseases and Cancer. Current Pharmaceutical Design, 2016, 22, 6209-6233.	0.9	36
26	Hypoxic synovial environment and expression of macrophage inflammatory protein $3\hat{l}^3$ /CCL20 in juvenile idiopathic arthritis. Arthritis and Rheumatism, 2008, 58, 1833-1838.	6.7	35
27	The Antineoplastic Agent Bryostatin-1 Induces Proinflammatory Cytokine Production in Human Monocytes: Synergy With Interleukin-2 and Modulation of Interleukin-2RÎ ³ Chain Expression. Blood, 1997, 89, 3402-3411.	0.6	34
28	Macrophage Activating Properties of The Tryptophan Catabolite Picolinic Acid. Advances in Experimental Medicine and Biology, 2003, 527, 55-65.	0.8	33
29	Ultrastructural evidence of the mechanisms responsible for interleukinâ€4â€activated rejection of a spontaneous murine adenocarcinoma. International Journal of Cancer, 1993, 53, 988-993.	2.3	33
30	Dendritic cell reprogramming by the hypoxic environment. Immunobiology, 2012, 217, 1241-1249.	0.8	32
31	Artificial neural network classifier predicts neuroblastoma patients' outcome. BMC Bioinformatics, 2016, 17, 347.	1.2	32
32	The Hypoxic Synovial Environment Regulates Expression of Vascular Endothelial Growth Factor and Osteopontin in Juvenile Idiopathic Arthritis. Journal of Rheumatology, 2009, 36, 1318-1329.	1.0	31
33	Identification of CD300a as a new hypoxia-inducible gene and a regulator of CCL20 and VEGF production by human monocytes and macrophages. Innate Immunity, 2014, 20, 721-734.	1.1	23
34	IL-2 Signaling in Human Monocytes Involves the Phosphorylation and Activation of p59 <i>hck</i> l. Journal of Immunology, 2000, 164, 4575-4585.	0.4	21
35	Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency. DMM Disease Models and Mechanisms, 2014, 7, 1083-1091.	1.2	20
36	Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer. Gene Therapy, 2001, 8, 431-441.	2.3	19

#	Article	IF	CITATIONS
37	Induction of Apoptosis by Flavopiridol in Human Neuroblastoma Cells Is Enhanced under Hypoxia and Associated With N-myc Proto-oncogene Down-Regulation. Clinical Cancer Research, 2004, 10, 8704-8719.	3.2	17
38	Macrophage-inflammatory protein-3α/CCL-20 is transcriptionally induced by the iron chelator desferrioxamine in human mononuclear phagocytes through nuclear factor (NF)-κB. Molecular Immunology, 2010, 47, 685-693.	1.0	16
39	Design of a multi-signature ensemble classifier predicting neuroblastoma patients' outcome. BMC Bioinformatics, 2012, 13, S13.	1.2	15
40	Multiple Cytokines Inhibit Interleukin-6-Dependent Murine Hybridoma/Plasmacytoma Proliferation. Cellular Immunology, 1996, 168, 117-121.	1.4	14
41	Antagonistic effect of picolinic acid and interferon- \hat{l}^3 on macrophage inflammatory protein- $1\hat{l}\pm\hat{l}^2$ production. Cellular Immunology, 2002, 220, 70-80.	1.4	14
42	Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers, 2020, 12, 1337.	1.7	14
43	PIPE-T: a new Galaxy tool for the analysis of RT-qPCR expression data. Scientific Reports, 2019, 9, 17550.	1.6	12
44	Transcriptome analysis defines myocardium gene signatures in children with ToF and ASD and reveals disease-specific molecular reprogramming in response to surgery with cardiopulmonary bypass. Journal of Translational Medicine, 2020, 18, 21.	1.8	11
45	Lymphokine-activated tumor inhibition: Combinatory activity of a synthetic nonapeptide from interleukin-1, interleukin-2, interleukin-4, and interferon-γ injected around tumor-draining lymph nodes. International Journal of Cancer, 1989, 44, 62-65.	2.3	10
46	Hypoxia inhibits Moloney murine leukemia virus expression in activated macrophages. Journal of Leukocyte Biology, 2007, 81, 528-538.	1.5	10
47	The Tumor Suppressor Hamartin Enhances Dbl Protein Transforming Activity through Interaction with Ezrin. Journal of Biological Chemistry, 2011, 286, 29973-29983.	1.6	10
48	Regulation of Langerhans cell functions in a hypoxic environment. Journal of Molecular Medicine, 2016, 94, 943-955.	1.7	10
49	Connectivity Map Analysis Indicates PI3K/Akt/mTOR Inhibitors as Potential Anti-Hypoxia Drugs in Neuroblastoma. Cancers, 2021, 13, 2809.	1.7	10
50	Immunohistochemical analysis of PDK1, PHD3 and HIF- $1\hat{l}_{\pm}$ expression defines the hypoxic status of neuroblastoma tumors. PLoS ONE, 2017, 12, e0187206.	1.1	10
51	Picolinic acid- or desferrioxamine-inducible autocrine activation of macrophages engineered to produce IFN \hat{I}^3 : an approach for gene therapy. Gene Therapy, 2004, 11, 560-568.	2.3	8
52	Treatment of newborn G6pc mice with bone marrow-derived myelomonocytes induces liver repair. Journal of Hepatology, 2011, 55, 1263-1271.	1.8	8
53	A Proteomic Analysis of GSD-1a in Mouse Livers: Evidence for Metabolic Reprogramming, Inflammation, and Macrophage Polarization. Journal of Proteome Research, 2019, 18, 2965-2978.	1.8	8
54	Circulating exosomal microRNA as potential biomarkers of hepatic injury and inflammation inGlycogen storage disease type 1a. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	8

#	Article	IF	Citations
55	Analysis of the Expression and Single-Nucleotide Variant Frequencies of the Butyrophilin-like 2 Gene in Patients With Uveal Melanoma. JAMA Ophthalmology, 2016, 134, 1125.	1.4	7
56	LPS-inducible nuclear factor in human monocytes that binds the negative regulatory element of the HIV LTR. Journal of Leukocyte Biology, 1994, 56, 21-26.	1.5	6
57	Identification of a novel mouse Dbl proto-oncogene splice variant: Evidence that SEC14 domain is involved in GEF activity regulation. Gene, 2014, 537, 220-229.	1.0	6
58	Development and characterization of an inducible mouse model for glycogen storage disease type lb. Journal of Inherited Metabolic Disease, 2018, 41, 1015-1025.	1.7	6
59	Exosomal MicroRNAs as Potential Biomarkers of Hepatic Injury and Kidney Disease in Glycogen Storage Disease Type Ia Patients. International Journal of Molecular Sciences, 2022, 23, 328.	1.8	5
60	Characterization of high- and low-risk hepatocellular adenomas by magnetic resonance in an animal model of glycogen storage disease type 1A. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	4
61	miR-23a contributes to T cellular redox metabolism in juvenile idiopathic oligoarthritis. Rheumatology, 2022, 61, 2694-2703.	0.9	4
62	The SGLT2-inhibitor dapagliflozin improves neutropenia and neutrophil dysfunction in a mouse model of the inherited metabolic disorder GSDIb. Molecular Genetics and Metabolism Reports, 2021, 29, 100813.	0.4	4
63	The effects of a long term dihydroergotoxine treatment on agonist and antagonist striatal dopamine binding sites are dose and age related. Pharmacological Research Communications, 1986, 18, 967-978.	0.2	3
64	Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion. Cell Cycle, 2015, 14, 1426-1437.	1.3	2
65	Hypoxia and Gene Expression. Cancer Drug Discovery and Development, 2014, , 91-119.	0.2	2
66	Mechanisms of Cancer-related Cardiomyopathy67Protection against chemotherapy cardiotoxicity by the human amniotic fluid stem cell secretome: a new tool for future paracrine therapy68Hyperlipidaemia reduces mortality in breast, prostate, lung and bowel cancer69DNA-repair in cardiomyocytes is critical for maintaining cardiac function. Cardiovascular Research, 2016, 111, \$14-\$15.	1.8	1
67	Dr. Luigi (Gigi) Varesio: A memorial. Journal of Leukocyte Biology, 2018, 103, 1251-1251.	1.5	0
68	Abstract 2002: Cell reprogramming by hypoxia. , 2010, , .		0
69	The necessity of animal experimentation in tumor immunology. , 1990, , 125-132.		O