Yan-Yan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8070556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering Vacancyâ€Atom Ensembles to Boost Catalytic Activity toward Hydrogen Evolution. Energy and Environmental Materials, 2023, 6, .	12.8	12
2	Co ₂ N Nanoparticles Anchored on Nâ€Doped Active Carbon as Catalyst for Oxygen Reduction Reaction in Zinc–Air Battery. Energy and Environmental Materials, 2022, 5, 935-943.	12.8	17
3	Wood-derived integrated air electrode with Co-N sites for rechargeable zinc-air batteries. Nano Research, 2022, 15, 1415-1423.	10.4	22
4	Co@C,MnO-NAC <i>via</i> selective wrapping for effective oxygen electrocatalysis in rechargeable Zn–air batteries. Sustainable Energy and Fuels, 2022, 6, 791-799.	4.9	2
5	Ru@Carbon Nanotube Composite Microsponge: Fabrication in Supercritical CO2 for Hydrogenation of p-Chloronitrobenzene. Nanomaterials, 2022, 12, 539.	4.1	1
6	Co-Based Nanoparticles Fabricated on Ni Foams for Efficient Hydrogen Generation from Ammonia Borane. ACS Applied Nano Materials, 2022, 5, 5064-5074.	5.0	11
7	Atomic-bridge structure in B-Co-P dual-active sites on boron nitride nanosheets for catalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 314, 121495.	20.2	40
8	Atomic Interfaceâ€Exciting Catalysis on Cobalt Nitrideâ€Oxide for Accelerating Hydrogen Generation. Small, 2022, 18, e2107417.	10.0	25
9	Coupling Fe ₃ C Nanoparticles and Nâ€Doping on Woodâ€Derived Carbon to Construct Reversible Cathode for Zn–Air Batteries. Small, 2022, 18, .	10.0	29
10	Bi ₂ S ₃ Nanorods Hosted on rGO Sheets from Pyrolysis of Molecular Precursors for Efficient Liâ€ion Storage. Energy and Environmental Materials, 2021, 4, 577-585.	12.8	17
11	Co/N-Doped hierarchical porous carbon as an efficient oxygen electrocatalyst for rechargeable Zn–air battery. RSC Advances, 2021, 11, 15753-15761.	3.6	10
12	Ensemble-boosting effect of Ru-Cu alloy on catalytic activity towards hydrogen evolution in ammonia borane hydrolysis. Applied Catalysis B: Environmental, 2021, 287, 119960.	20.2	82
13	Advances and Prospects in Metal–Organic Frameworks as Key Nexus for Chemocatalytic Hydrogen Production. Small, 2021, 17, e2102201.	10.0	12
14	Surface Phosphorusâ€Induced CoO Coupling to Monolithic Carbon for Efficient Air Electrode of Quasiâ€Solidâ€State Zn–Air Batteries. Advanced Science, 2021, 8, e2101314.	11.2	51
15	Tuning surface d charge of Ni-Ru alloys for unprecedented catalytic activity towards hydrogen generation from ammonia borane hydrolysis. Applied Catalysis B: Environmental, 2021, 291, 120094.	20.2	66
16	Woodâ€Đerived Integral Air Electrode for Enhanced Interfacial Electrocatalysis in Rechargeable Zinc–Air Battery. Small, 2021, 17, e2101607.	10.0	47
17	Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Applied Catalysis B: Environmental, 2020, 268, 118393.	20.2	100
18	Enhancing effect of Fe-doping on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3. Applied Catalysis B: Environmental, 2020, 265, 118612.	20.2	100

Yan-Yan Liu

#	Article	IF	CITATIONS
19	Nitrogen and phosphorus modification to enhance the catalytic activity of biomass-derived carbon toward the oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 2707-2717.	4.9	32
20	The Proportion of Feâ€N X , N Doping Species and Fe 3 C to Oxygen Catalytic Activity in Coreâ€Shell Feâ€N/C Electrocatalyst. Chemistry - an Asian Journal, 2020, 15, 310-318.	3.3	4
21	Ru–Fe nanoalloys supported on N-doped carbon as efficient catalysts for hydrogen generation from ammonia borane. Sustainable Energy and Fuels, 2020, 4, 3677-3686.	4.9	31
22	Interfacial effect of Co4S3–Co9S8 nanoparticles hosted on rGO sheets derived from molecular precursor pyrolysis on enhancing electrochemical behaviour. Catalysis Science and Technology, 2020, 10, 3622-3634.	4.1	11
23	Defect-Rich, Graphenelike Carbon Sheets Derived from Biomass as Efficient Electrocatalysts for Rechargeable Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 2981-2989.	6.7	65
24	Molybdenum, Cobalt Sulfide-Modified N-, S-Doped Graphene from Low-Temperature Molecular Pyrolysis: Mutual Activation Effect for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 19442-19452.	6.7	9
25	Magnetic CoOx@C-Reduced graphene oxide composite with catalytic activity towards hydrogen generation. International Journal of Hydrogen Energy, 2019, 44, 28163-28172.	7.1	17
26	Pitaya pulp structural cobalt–carbon composite for efficient hydrogen generation from borohydride hydrolysis. Journal of Alloys and Compounds, 2019, 808, 151774.	5.5	13
27	An assembly of carbon dots and carbon sheets from plant biomass for excellent oxygen reduction reaction. Sustainable Energy and Fuels, 2019, 3, 3172-3181.	4.9	9
28	Efficient carbon-based catalyst derived from natural cattail fiber for hydrogen evolution reaction. Journal of Solid State Chemistry, 2019, 274, 207-214.	2.9	42
29	Birdcage-Type CoO _{<i>x</i>} -Carbon Catalyst Derived from Metal–Organic Frameworks for Enhanced Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 9782-9792.	6.7	48
30	Co-, Fe-, and N-Modified Carbon Composites for Excellent Catalytic Performances toward Electrochemical Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 8744-8754.	6.7	14
31	Catalytically Active Carbon From Cattail Fibers for Electrochemical Reduction Reaction. Frontiers in Chemistry, 2019, 7, 786.	3.6	29
32	Hollow carbonaceous microspheres-reduced graphene oxide enhances lithium storage performance of SnO2-based anode. Journal of Solid State Chemistry, 2019, 270, 553-562.	2.9	3
33	Local Plant-Derived Carbon Sheets as Sustainable Catalysts for Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2107-2115.	6.7	26
34	Defect-rich (Co–CoS ₂) _x @Co ₉ S ₈ nanosheets derived from monomolecular precursor pyrolysis with excellent catalytic activity for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 7977-7987.	10.3	46
35	CoP nanoparticles anchored on N,P-dual-doped graphene-like carbon as a catalyst for water splitting in non-acidic media. Nanoscale, 2018, 10, 2603-2612.	5.6	96
36	Reaction of Co ₃ O ₄ Nanocrystals on Graphene Sheets to Fabricate Excellent Catalysts for Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8427-8436.	6.7	35

Yan-Yan Liu

#	Article	IF	CITATIONS
37	Multimetallic Ni–Mo/Cu nanowires as nonprecious and efficient full water splitting catalyst. Journal of Materials Chemistry A, 2017, 5, 4207-4214.	10.3	83
38	Co-Co3O4@carbon core–shells derived from metalâ^'organic framework nanocrystals as efficient hydrogen evolution catalysts. Nano Research, 2017, 10, 3035-3048.	10.4	106
39	Nitrogen-doped Fe ₃ C@C particles as an efficient heterogeneous photo-assisted Fenton catalyst. RSC Advances, 2017, 7, 15168-15175.	3.6	26
40	Nanoporous Carbon Derived from Core–Shells@Sheets through the Template-Activation Method for Effective Adsorption of Dyes. ACS Omega, 2016, 1, 491-497.	3.5	5
41	Magnetic Co@g-C ₃ N ₄ Core–Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation. Langmuir, 2016, 32, 6272-6281.	3.5	67
42	Structural Evolution of Co-Based Metal Organic Frameworks in Pyrolysis for Synthesis of Core–Shells on Nanosheets: Co@CoO _{<i>x</i>} @Carbon-rGO Composites for Enhanced Hydrogen Generation Activity. ACS Applied Materials & Interfaces, 2016, 8, 15430-15438.	8.0	53
43	Magnetic catalysts as nanoactuators to achieve simultaneous momentum-transfer and continuous-flow hydrogen production. Journal of Materials Chemistry A, 2016, 4, 4280-4287.	10.3	35
44	Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. Journal of Materials Chemistry A, 2016, 4, 1694-1701.	10.3	460
45	Anchoring superparamagnetic core–shells onto reduced graphene oxide: fabrication of Ni–carbon–rGO nanocomposite for effective adsorption and separation. RSC Advances, 2015, 5, 10033-10039.	3.6	11
46	Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 12642-12645.	10.3	83
47	Improving the anode performances of TiO ₂ –carbon–rGO composites in lithium ion batteries by UV irradiation. New Journal of Chemistry, 2015, 39, 9345-9350.	2.8	6
48	Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe–N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 2015, 7, 21511-21520.	8.0	262
49	Hierarchically porous AlPO-5-based microspheres as heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition. New Journal of Chemistry, 2014, 38, 3078-3083.	2.8	34
50	Template-Assisted Synthesis of Co,Mn-MOFs with Magnetic Properties Based on Pyridinedicarboxylic Acid. Crystal Growth and Design, 2012, 12, 3505-3513.	3.0	81
51	External Template-Assisted Self-Assembly:Design and Synthesis of 4,4′-bipy-Based Mo(W)/Cu/S Heterothiometallic Polymeric Clusters Directed by 1,1′-Bis(pyridinium)methylene Cation. Crystal Growth and Design, 2011, 11, 3448-3455	3.0	42