
Tobias Führmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8070471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of an Enzyme-Mediated Reversible Cross-linked Hydrogel for Cell Culture. Biomacromolecules, 2021, 22, 5118-5127.	2.6	7
2	Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury. Biomedical Materials (Bristol), 2020, 15, 015012.	1.7	12
3	Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nature Communications, 2019, 10, 518.	5.8	372
4	Fibroadhesive scarring of grafted collagen scaffolds interferes with implant–host neural tissue integration and bridging in experimental spinal cord injury. International Journal of Energy Production and Management, 2019, 6, 75-87.	1.9	17
5	Lineage tracing reveals the hierarchical relationship between neural stem cell populations in the mouse forebrain. Scientific Reports, 2019, 9, 17730.	1.6	9
6	Reply to Comment on â€~Adult skin-derived precursor Schwann cell grafts form growths in the injured spinal cord of Fischer rats'. Biomedical Materials (Bristol), 2018, 13, 048002.	1.7	0
7	Adult skin-derived precursor Schwann cell grafts form growths in the injured spinal cord of Fischer rats. Biomedical Materials (Bristol), 2018, 13, 034101.	1.7	10
8	Combined delivery of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue repair in an animal model of spinal cord injury. Biomedical Materials (Bristol), 2018, 13, 024103.	1.7	47
9	Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury. Stem Cell Reports, 2018, 11, 1433-1448.	2.3	81
10	The role of biomaterials in overcoming barriers to regeneration in the central nervous system. Biomedical Materials (Bristol), 2018, 13, 050201.	1.7	9
11	Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help?. Advanced Healthcare Materials, 2017, 6, 1601130.	3.9	135
12	Recent advances in regenerative medicine approaches for spinal cord injuries. Current Opinion in Biomedical Engineering, 2017, 4, 40-49.	1.8	5
13	Cyclosporine-immunosuppression does not affect survival of transplanted skin-derived precursor Schwann cells in the injured rat spinal cord. Neuroscience Letters, 2017, 658, 67-72.	1.0	4
14	Functional recovery not correlated with axon regeneration through olfactory ensheathing cell-seeded scaffolds in a model of acute spinal cord injury. Tissue Engineering and Regenerative Medicine, 2016, 13, 585-600.	1.6	9
15	Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials, 2016, 83, 23-36.	5.7	159
16	Peptide-functionalized polymeric nanoparticles for active targeting of damaged tissue in animals with experimental autoimmune encephalomyelitis. Neuroscience Letters, 2015, 602, 126-132.	1.0	21
17	Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord. Methods, 2015, 84, 60-69.	1.9	63
18	A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. DMM Disease Models and Mechanisms, 2014, 7, 299-309.	1.2	114

Tobias Führmann

#	Article	IF	CITATIONS
19	Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 2014, 39, 169-188.	2.8	248
20	Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord. Brain Research, 2014, 1585, 37-50.	1.1	28
21	A bioengineered 3D ovarian cancer model for the assessment ofÂpeptidase–mediated enhancement of spheroid growth andÂintraperitoneal spread. Biomaterials, 2013, 34, 7389-7400.	5.7	53
22	Host reaction to poly(2-hydroxyethyl methacrylate) scaffolds in a small spinal cord injury model. Journal of Materials Science: Materials in Medicine, 2013, 24, 2001-2011.	1.7	21
23	Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials, 2013, 34, 4945-4955.	5.7	83
24	Motor outcome and allodynia are largely unaffected by novel olfactory ensheathing cell grafts to repair low-thoracic lesion gaps in the adult rat spinal cord. Behavioural Brain Research, 2013, 237, 185-189.	1.2	20
25	Cell–Cell interactions of human neural progenitor-derived astrocytes within a microstructured 3D-scaffold. Biomaterials, 2010, 31, 7705-7715.	5.7	48
26	Expansion of human bone marrow-derived mesenchymal stromal cells: serum-reduced medium is better than conventional medium. Cytotherapy, 2010, 12, 587-592.	0.3	16
27	Axon growth-promoting properties of human bone marrow mesenchymal stromal cells. Neuroscience Letters, 2010, 474, 37-41.	1.0	28
28	Growth factor and cytokine expression of human mesenchymal stromal cells is not altered in an in vitro model of tissue damage. Cytotherapy, 2010, 12, 870-880.	0.3	17
29	Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neuroscience, 2009, 10, 16.	0.8	123
30	Human neural cell interactions with orientated electrospun nanofibers <i>in vitro</i> . Nanomedicine, 2009, 4, 11-30.	1.7	99
31	CatWalk gait analysis in assessment of functional recovery after sciatic nerve injury. Journal of Neuroscience Methods, 2008, 173, 91-98.	1.3	144