Zhen-Yu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8070327/publications.pdf

Version: 2024-02-01

80 papers

2,213 citations

28 h-index 243296 44 g-index

81 all docs 81 docs citations

81 times ranked 2975 citing authors

#	Article	IF	CITATIONS
1	Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via microwave irradiation. Applied Surface Science, 2018, 459, 588-595.	3.1	170
2	Bioinspired functionalization of MXenes (Ti3C2TX) with amino acids for efficient removal of heavy metal ions. Applied Surface Science, 2020, 504, 144603.	3.1	141
3	Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries. Carbon, 2019, 142, 32-39.	5. 4	78
4	Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices. ACS Nano, 2018, 12, 4440-4452.	7.3	77
5	Multi-channel FeP@C octahedra anchored on reduced graphene oxide nanosheet with efficient performance for lithium-ion batteries. Carbon, 2018, 139, 477-485.	5.4	75
6	Synthesis and electrochemical performance characterization of Ce-doped Li 3 V 2 (PO 4) 3 /C as cathode materials for lithium-ion batteries. Journal of Power Sources, 2013, 243, 33-39.	4.0	74
7	Efficient Polysulfide Redox Enabled by Lattice-Distorted Ni ₃ Fe Intermetallic Electrocatalyst-Modified Separator for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 19572-19580.	4.0	72
8	Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery. Science China Materials, 2020, 63, 2443-2455.	3. 5	69
9	Rational design of intertwined carbon nanotubes threaded porous CoP@carbon nanocubes as anode with superior lithium storage. Carbon, 2019, 142, 269-277.	5.4	58
10	Facile preparation of functionalized carbon nanotubes with tannins through mussel-inspired chemistry and their application in removal of methylene blue. Journal of Molecular Liquids, 2018, 271, 246-253.	2.3	55
11	A Chemical Blowing Strategy to Fabricate Biomassâ€Derived Carbonâ€Aerogels with Grapheneâ€Like Nanosheet Structures for Highâ€Performance Supercapacitors. ChemSusChem, 2019, 12, 2462-2470.	3.6	53
12	Facile Synthesis of a "Two-in-One―Sulfur Host Featuring Metallic-Cobalt-Embedded N-Doped Carbon Nanotubes for Efficient Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5968-5978.	4.0	52
13	Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries. Carbon, 2018, 127, 588-595.	5.4	50
14	In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage. Carbon, 2019, 155, 1-8.	5.4	48
15	Manganese Monoxide/Biomass-Inherited Porous Carbon Nanostructure Composite Based on the High Water-Absorbent Agaric for Asymmetric Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 4284-4294.	3.2	45
16	Integrating metallic cobalt and N/B heteroatoms into porous carbon nanosheets as efficient sulfur immobilizer for lithium-sulfur batteries. Carbon, 2020, 167, 918-929.	5.4	43
17	Agaric-assisted synthesis of core-shell MnO@C microcubes as super-high-volumetric-capacity anode for lithium-ion batteries. Carbon, 2020, 162, 36-45.	5.4	43
18	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 19053-19057.	7.2	43

#	Article	IF	Citations
19	Fused perylenebisimide–carbazole: new ladder chromophores with enhanced third-order nonlinear optical activities. Chemical Communications, 2011, 47, 10749.	2.2	42
20	Moltenâ€Saltâ€Assisted Synthesis of Hierarchical Porous MnO@Biocarbon Composites as Promising Electrode Materials for Supercapacitors and Lithiumâ€Ion Batteries. ChemSusChem, 2019, 12, 283-290.	3.6	42
21	Volatilizable and cost-effective quinone-based solid additives for improving photovoltaic performance and morphological stability in non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13049-13058.	5.2	41
22	Unraveling the Morphology in Solution-Processed Pseudo-Bilayer Planar Heterojunction Organic Solar Cells. ACS Applied Materials & Solar Cells.	4.0	38
23	Subphthalocyanine Triimides: Solution Processable Bowl-Shaped Acceptors for Bulk Heterojunction Solar Cells. Organic Letters, 2019, 21, 3382-3386.	2.4	38
24	Covalent grafting interface engineering to prepare highly efficient and stable polypropylene/mesoporous SiO2 separator for Li-ion batteries. Applied Surface Science, 2021, 541, 148405.	3.1	37
25	Surface-seeding secondary growth for CoO@Co9S8 P-N heterojunction hollow nanocube encapsulated into graphene as superior anode toward lithium ion storage. Chemical Engineering Journal, 2021, 425, 130648.	6.6	37
26	Scalable and rapid Far Infrared reduction of graphene oxide for high performance lithium ion batteries. Energy Storage Materials, 2015, 1, 9-16.	9.5	33
27	Ultrathin and Strong Electrospun Porous Fiber Separator. ACS Applied Energy Materials, 2018, 1, 4794-4803.	2.5	32
28	Cobaltâ€Tungsten Bimetallic Carbide Nanoparticles as Efficient Catalytic Material for Highâ€Performance Lithium–Sulfur Batteries. ChemSusChem, 2019, 12, 4866-4873.	3.6	32
29	Self-templated synthesis of hollow hierarchical porous olive-like carbon toward universal high-performance alkali (Li, Na, K)-ion storage. Carbon, 2021, 174, 317-324.	5.4	30
30	Effects of the Particle Size of BaTiO3 Fillers on Fabrication and Dielectric Properties of BaTiO3/Polymer/Al Films for Capacitor Energy-Storage Application. Materials, 2019, 12, 439.	1.3	28
31	Enhanced chemisorption and catalytic conversion of polysulfides via CoFe@NC nanocubes modified separator for superior Li–S batteries. Chemical Engineering Journal, 2022, 433, 133792.	6.6	26
32	Poly(vinylidene fluoride) Modified Commercial Paper as a Separator with Enhanced Thermal Stability and Electrolyte Affinity for Lithiumâ€ion Battery. Energy and Environmental Materials, 2021, 4, 664-670.	7.3	25
33	Sol–gel-assisted, fast and low-temperature synthesis of La-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. RSC Advances, 2015, 5, 17924-17930.	1.7	24
34	Lithium Difluorophosphate as an Effective Additive for Improving the Initial Coulombic Efficiency of a Silicon Anode. ChemElectroChem, 2020, 7, 3743-3751.	1.7	24
35	Utilizing egg lecithin coating to improve the electrochemical performance of regenerated lithium iron phosphate. Journal of Alloys and Compounds, 2018, 745, 164-171.	2.8	23
36	A simple and recyclable molten-salt route to prepare superthin biocarbon sheets based on the high water-absorbent agaric for efficient lithium storage. Carbon, 2020, 157, 286-294.	5 . 4	23

#	Article	IF	Citations
37	Renewable agaric-based hierarchically porous cocoon-like MnO/Carbon composites enable high-energy and high-rate Li-ion batteries. Electrochimica Acta, 2019, 322, 134757.	2.6	22
38	Constructing a directional ion acceleration layer at WO3/ZnO heterointerface to enhance Li-ion transfer and storage. Composites Part B: Engineering, 2021, 205, 108511.	5.9	21
39	PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. Journal of Electroanalytical Chemistry, 2020, 868, 114195.	1.9	20
40	Simultaneous Electrospinning and Electrospraying: Fabrication of a Carbon Nanofibre/MnO/Reduced Graphene Oxide Thin Film as a Highâ€Performance Anode for Lithiumâ€lon Batteries. ChemElectroChem, 2018, 5, 51-61.	1.7	19
41	Areca-inspired core-shell structured MnO@C composite towards enhanced lithium-ion storage. Carbon, 2021, 184, 706-713.	5.4	19
42	High edge-nitrogen-doped porous carbon nanosheets with rapid pseudocapacitive mechanism for boosted potassium-ion storage. Carbon, 2022, 187, 302-309.	5.4	18
43	Novel agaric-derived olive-like yolk–shell structured MnO@C composites for superior lithium storage. Chemical Communications, 2020, 56, 13201-13204.	2.2	17
44	Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 797-805.	2.0	15
45	Needle-like cobalt phosphide arrays grown on carbon fiber cloth as a binder-free electrode with enhanced lithium storage performance. Chinese Chemical Letters, 2021, 32, 154-157.	4.8	15
46	Chemical vapor deposition-assisted fabrication of a graphene-wrapped MnO/carbon nanofibers membrane as a high-rate and long-life anode for lithium ion batteries. RSC Advances, 2017, 7, 50973-50980.	1.7	14
47	Ultrathin Nanosheet-Assembled Flowerlike NiSe ₂ Catalyst Boosts Sulfur Redox Reaction Kinetics for Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 3431-3438.	2.5	14
48	Layer-by-Layer Solution-Processed Organic Solar Cells with Perylene Diimides as Acceptors. ACS Applied Materials & Diterfaces, 2021, 13, 29876-29884.	4.0	14
49	In Situ Constructing a Stable Solid Electrolyte Interface by Multifunctional Electrolyte Additive to Stabilize Lithium Metal Anodes for Li–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17959-17967.	4.0	14
50	Two for One: A Biomass Strategy for Simultaneous Synthesis of MnO ₂ Microcubes and Porous Carbon Microcubes for High Performance Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 6333-6342.	3.2	13
51	Seleno twisted benzodiperylenediimides: facile synthesis and excellent electron acceptors for additive-free organic solar cells. Chemical Communications, 2019, 55, 703-706.	2.2	12
52	Interlayered MoS2/rGO thin film for efficient lithium storage produced by electrospray deposition and far-infrared reduction. Applied Surface Science, 2020, 499, 143940.	3.1	12
53	Subnaphthalocyanine triimides: potential three-dimensional solution processable acceptors for organic solar cells. Journal of Materials Chemistry C, 2020, 8, 2186-2195.	2.7	12
54	Microwave-Assisted Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67. Journal of Nanomaterials, 2016, 2016, 1-9.	1.5	10

#	Article	IF	Citations
55	Effect of substituents of twisted benzodiperylenediimides on non-fullerene solar cells. Organic Electronics, 2017, 47, 72-78.	1.4	9
56	Tunable 2D tremella-derived carbon nanosheets with enhanced pseudocapacitance behavior for ultrafast potassium-ion storage. Science China Technological Sciences, 2021, 64, 2047-2056.	2.0	9
57	Synthesis of LiFe(1â^'x)V x PO4/C composite cathode materials with high performance via an aqueous solution–evaporation method. Journal of Solid State Electrochemistry, 2014, 18, 771-777.	1.2	8
58	Homogeneous precipitation synthesis and electrochemical performance of LiFePO ₄ /CNTs/C composites as advanced cathode materials for lithium ion batteries. RSC Advances, 2015, 5, 107293-107298.	1.7	8
59	A facile electrospinning and electrospraying synchronization technique for preparation of high performance MnO/C@rGO composite anodes for lithium storage. RSC Advances, 2017, 7, 48294-48302.	1.7	8
60	1,2,4-Triazoline-3,5-dione substituted perylene diimides as near infrared acceptors for bulk heterojunction organic solar cells. Dyes and Pigments, 2021, 187, 109108.	2.0	8
61	A corn-inspired structure design for an iron oxide fiber/reduced graphene oxide composite as a high-performance anode material for Li-ion batteries. RSC Advances, 2017, 7, 44874-44883.	1.7	7
62	Aramid nanofiber reinforced cellulose paper for high-safety lithium-ion batteries. Cellulose, 2021, 28, 10579-10588.	2.4	7
63	Ultrafine SnO2 Nanoparticles Encapsulated in High-Conductivity Graphited Carbon Nanotubes As Anodes for High Electrochemistry Performance Lithium-Ion Batteries. Journal of Electronic Materials, 2019, 48, 7250-7257.	1.0	5
64	Superior electrocatalytic ORR performance of Melaleuca Leucadendron L barks derived hierarchical porous carbon with abundant atom-scale vacancies and multiheteroatoms. Ceramics International, 2022, 48, 11111-11123.	2.3	5
65	Intermolecular Interaction for Binary Mixtures of Propylene Carbonate with Acetonitrile, Dimethyl Carbonate, Diethyl Carbonate at Different Temperatures: Density and Viscosity. Zeitschrift Fur Physikalische Chemie, 2017, 232, 127-151.	1.4	4
66	Volumetric and viscosity behavior studies of Et4NBF4, Pr4NBF4, and Bu4NBF4 in acetonitrile solutions at TÂ=Â(293.15–323.15) K. Journal of Molecular Liquids, 2021, 330, 115630.	2.3	4
67	Effect of \hat{I}^2 -Cyclodextrin on the Micellization of Cetyltrimethylammonium in Aqueous Solution at High Temperature. Journal of Dispersion Science and Technology, 2009, 30, 1390-1394.	1.3	3
68	Cut-Price Fabrication of Free-standing Porous Carbon Nanofibers Film Electrode for Lithium-ion Batteries. Applied Sciences (Switzerland), 2019, 9, 1016.	1.3	3
69	Facile construction of honeycomb-shaped porous carbon electrode materials using recyclable sodium chloride template for efficient lithium storage. Science China Technological Sciences, 2020, 63, 2123-2130.	2.0	3
70	Co-W bimetallic carbides as sulfur host for high-performance lithium–sulfur batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 16577-16588.	1.1	3
71	Solution-processable silicon naphthalocyanine tetraimides as near infrared electron acceptors in organic solar cells. Dyes and Pigments, 2022, 197, 109846.	2.0	3
72	Microelectrode Electrochemistry in Microemulsion Systems. Analytical Letters, 2006, 39, 1801-1808.	1.0	2

#	Article	IF	CITATION
73	A tin(iv) oxides/carbon nanotubes composite with core-tubule structure as an anode material for high electrochemistry performance LIBs. RSC Advances, 2018, 8, 13186-13190.	1.7	2
74	Biomimetic surface functionalization of SiO2 microspheres with catecholamine-containing poly(itaconic acid) for removal of cationic dye. Surfaces and Interfaces, 2020, 21, 100644.	1.5	2
75	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 19201-19205.	1.6	2
76	Spherical CoS2 with high load capacity as cathode carrier material of lithium sulfur batteries for improving the volume energy density. Journal of Materials Science: Materials in Electronics, 2022, 33, 14121-14133.	1.1	2
77	A dual-regulation strategy of B/N codoped CNT-encapsulated Ni nanoparticles as a catalytic host and separator coating promises high-performance Li-S batteries. Science China Technological Sciences, 2022, 65, 1567-1577.	2.0	2
78	Spectroscopic, Conductivity and Molecular Modeling Studies of the Inclusion Complex of TNDAB with Cucurbit[7]uril in Aqueous Solution. Zeitschrift Fur Physikalische Chemie, 2014, 228, 939-951.	1.4	1
79	Conductivity and Surface Tension Study for Cucurbit[7]uril Inclusion Complex of Cetyltrimethylammonium Chloride in Aqueous Solution. Journal of Dispersion Science and Technology, 2010, 31, 861-865.	1.3	O
80	A Novel Solvent-free Room Temperature Molten Salt Electrolyte Based on LiODFB and 2-Oxazolidinone for EDLCs. Zeitschrift Fur Physikalische Chemie, 2013, 227, 1723-1730.	1.4	0