Ad van der Avoird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8069883/publications.pdf

Version: 2024-02-01

197 papers 8,297 citations

³⁸⁷⁴² 50 h-index

82 g-index

203 all docs 203
docs citations

203 times ranked 3761 citing authors

#	Article	IF	CITATIONS
1	Collisionâ€induced spinâ€orbit relaxation of highly vibrationally excited NO near 1 K. Natural Sciences, 2022, 2, e20210074.	2.1	5
2	Mapping partial wave dynamics in scattering resonances by rotational de-excitation collisions. Nature Chemistry, 2022, 14, 538-544.	13.6	6
3	Ammonia dimer: extremely fluxional but still hydrogen bonded. Nature Communications, 2022, 13, 1470.	12.8	7
4	Glory scattering in deeply inelastic molecular collisions. Nature Chemistry, 2022, 14, 664-669.	13.6	11
5	The He–H3+ complex. I. Vibration-rotation-tunneling states and transition probabilities. Journal of Chemical Physics, 2022, 156, 144307.	3.0	2
6	The He–H3+ complex. II. Infrared predissociation spectrum and energy term diagram. Journal of Chemical Physics, 2022, 156, 144308.	3.0	3
7	Vibration-Rotation-Tunneling Levels and Spectra of Van der Waals Molecules. , 2022, , 194-234.		2
8	Efficient computational methods for rovibrational transition rates in molecular collisions. Journal of Chemical Physics, 2022, 157, .	3.0	2
9	Determining the nature of quantum resonances by probing elastic and reactive scattering in cold collisions. Nature Chemistry, 2021, 13, 94-98.	13.6	37
10	Intermolecular dynamics of NH ₃ -rare gas complexes in the <i>$\hat{l}^{1/2}$</i> ₂ umbrella region of NH ₃ investigated by rovibrational laser jet-cooled spectroscopy and <i>ab initio</i> calculations. Physical Chemistry Chemical Physics, 2021, 23, 10864-10874.	2.8	4
11	Rotational spectroscopy and bound state calculations of deuterated NH3–H2 van der Waals complexes. Journal of Molecular Spectroscopy, 2021, 377, 111442.	1.2	3
12	Vibrational spectroscopy of H2He+ and D2He+. Journal of Molecular Spectroscopy, 2021, 377, 111423.	1.2	8
13	Quantifying the interplay between fine structure and geometry of an individual molecule on a surface. Physical Review B, 2021, 103, .	3.2	25
14	Multi-channel distorted-wave Born approximation for rovibrational transition rates in molecular collisions. Journal of Chemical Physics, 2021, 155, 034105.	3.0	4
15	Ab initio study of the O3–N2 complex: Potential energy surface and rovibrational states. Journal of Chemical Physics, 2021, 155, 054308.	3.0	3
16	Paraâ€ortho hydrogen conversion: Solving a 90â€year old mystery. Natural Sciences, 2021, 1, e10002.	2.1	11
17	Molecular square dancing in CO-CO collisions. Science, 2020, 369, 307-309.	12.6	13
18	Potential energy surface and bound states of the H2O–HF complex. Journal of Chemical Physics, 2020, 153, 214301.	3.0	13

#	Article	IF	CITATIONS
19	Correlations in rotational energy transfer for NO–D2 inelastic collisions. Journal of Chemical Physics, 2020, 153, 064301.	3.0	5
20	Rotational–vibrational resonance states. Physical Chemistry Chemical Physics, 2020, 22, 15081-15104.	2.8	10
21	Imaging the onset of the resonance regime in low-energy NO-He collisions. Science, 2020, 368, 626-630.	12.6	68
22	State-to-state scattering of highly vibrationally excited NO at broadly tunable energies. Nature Chemistry, 2020, 12, 528-534.	13.6	20
23	Ab initio potential energy surface and microwave spectrum of the NH3–N2 van der Waals complex. Journal of Chemical Physics, 2020, 152, 234304.	3.0	3
24	Experimental and theoretical investigation of resonances in low-energy NO–H2 collisions. Journal of Chemical Physics, 2020, 153, 244302.	3.0	5
25	Direct observation of product-pair correlations in rotationally inelastic collisions of ND ₃ with D ₂ . Physical Chemistry Chemical Physics, 2019, 21, 14033-14041.	2.8	14
26	The waterâ€"carbon monoxide dimer: new infrared spectra, <i>ab initio</i> rovibrational energy level calculations, and an interesting in-termolecular mode. Physical Chemistry Chemical Physics, 2019, 21, 14911-14922.	2.8	14
27	Differential Cross Sections for State-to-State Collisions of NO($\langle i \rangle v \langle i \rangle = 10$) in Near-Copropagating Beams. Journal of Physical Chemistry Letters, 2019, 10, 2422-2427.	4.6	17
28	Update of the HITRAN collision-induced absorption section. Icarus, 2019, 328, 160-175.	2.5	105
29	Imaging inelastic scattering of CO with argon: polarization dependent differential cross sections. Physical Chemistry Chemical Physics, 2019, 21, 9200-9211.	2.8	3
30	Near dissociation states for H ₂ ⁺ â€"He on MRCI and FCI potential energy surfaces. Physical Chemistry Chemical Physics, 2019, 21, 24976-24983.	2.8	30
31	<i>Ab initio</i> potential and rotational spectra of the CO–N2 complex. Journal of Chemical Physics, 2018, 148, 044313.	3.0	13
32	Diabatic states, nonadiabatic coupling, and the counterpoise procedure for weakly interacting open-shell molecules. Journal of Chemical Physics, 2018, 148, .	3.0	8
33	Correlated energy transfer in rotationally and spin–orbit inelastic collisions of NO(X ² î _{1/2} , <i>j</i> = 1/2f) with O ₂ (X ³ î£ _g ^{â°°}). Physical Chemistry Chemical Physics, 2018, 20. 12444-12453.	2.8	11
34	O2â^'O2 and O2â^'N2 collision-induced absorption mechanisms unravelled. Nature Chemistry, 2018, 10, 549-554.	13.6	29
35	Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard. Nature Chemistry, 2018, 10, 435-440.	13.6	56
36	Observation of correlated excitations in bimolecular collisions. Nature Chemistry, 2018, 10, 469-473.	13.6	32

#	Article	IF	CITATIONS
37	Characterization of methanol as a magnetic field tracer in star-forming regions. Nature Astronomy, 2018, 2, 145-150.	10.1	23
38	Cold Collisions in a Molecular Synchrotron. Physical Review Letters, 2018, 120, 033402.	7.8	22
39	Interaction of H ₂ O with CO: potential energy surface, bound states and scattering calculations. Physical Chemistry Chemical Physics, 2018, 20, 5469-5477.	2.8	24
40	Molecules in confinement in clusters, quantum solvents and matrices: general discussion. Faraday Discussions, 2018, 212, 569-601.	3.2	4
41	Concluding remarks. Faraday Discussions, 2018, 212, 603-607.	3.2	0
42	Energy dependent parity-pair behavior in NO + He collisions. Journal of Chemical Physics, 2018, 149, 084306.	3.0	2
43	Rovibrational laser jet-cooled spectroscopy of the NH ₃ â€"Ar complex in the <i>î¹½</i> ₂ umbrella region of NH ₃ : comparison between new infrared data and an <i>an <i>ab initio</i><col/></i>	1.7	5
44	Near infrared overtone (vOH = 2 ↕0) spectroscopy of Ne–H2O clusters. Journal of Chemical Physics, 2017, 146, 104204.	3.0	9
45	Rotational Spectroscopy of the NH ₃ â€"H ₂ Molecular Complex. Astrophysical Journal, 2017, 838, 27.	4.5	17
46	Potential energy and dipole moment surfaces of the triplet states of the O2(X3Σgâ^') â^' O2(X3Σgâ^',a1Î"g,b1Σg complex. Journal of Chemical Physics, 2017, 147, 084306.	;+ <u>)</u> 3.0	14
47	Line-shape theory of the X3Σgâ^â†'a1Î"g,b1Σg+ transitions in O2â€"O2 collision-induced absorption. Journal of Chemical Physics, 2017, 147, 084307.	3.0	9
48	State-to-State Differential Cross Sections for Inelastic Collisions of NO Radicals with <i>para</i> -H ₂ and <i>ortho</i> -D ₂ . Journal of Physical Chemistry A, 2017, 121, 7446-7454.	2.5	13
49	Imaging diffraction oscillations for inelastic collisions of NO radicals with He and D2. Journal of Chemical Physics, 2017, 147, 013918.	3.0	16
50	Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms. Nature Chemistry, 2017, 9, 226-233.	13.6	50
51	Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances. Nature Physics, 2017, 13, 35-38.	16.7	99
52	Using a direct simulation Monte Carlo approach to model collisions in a buffer gas cell. Journal of Chemical Physics, 2017, 146, 044302.	3.0	10
53	Nuclear spin/parity dependent spectroscopy and predissociation dynamics in vOH = 2 ↕0 overtone excited Ne–H2O clusters: Theory and experiment. Journal of Chemical Physics, 2017, 147, 214304.	3.0	5
54	Quantum-Chemical calculations revealing the effects of magnetic fields on methanol masers. Proceedings of the International Astronomical Union, 2017, 13, 23-26.	0.0	O

#	Article	lF	Citations
55	Rotational energy transfer in collisions of ammonia with rare gas atoms and H ₂ . Journal of Physics: Conference Series, 2017, 875, 102034.	0.4	0
56	Hyperfine interactions and internal rotation in methanol. Journal of Chemical Physics, 2016, 145, 244301.	3.0	16
57	Stark Interference of Electric and Magnetic Dipole Transitions in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>A</mml:mi></mml:mrow> of OH. Physical Review Letters, 2016, 116, 153001.</mml:mrow></mml:math>	<td>ath Band</td>	ath Band
58	Communication: Multiple-property-based diabatization for open-shell van der Waals molecules. Journal of Chemical Physics, 2016, 144, 121101.	3.0	16
59	Probing Scattering Resonances in (Ultra)Cold Inelastic NO–He Collisions. Journal of Physical Chemistry A, 2016, 120, 4770-4777.	2.5	10
60	QUANTUM CALCULATION OF INELASTIC CO COLLISIONS WITH H. III. RATE COEFFICIENTS FOR RO-VIBRATIONAL TRANSITIONS. Astrophysical Journal, 2015, 813, 96.	4.5	12
61	Resonances in rotationally inelastic scattering of NH3 and ND3 with H2. Journal of Chemical Physics, 2015, 143, 044312.	3.0	34
62	The elusive S2 state, the S1/S2 splitting, and the excimer states of the benzene dimer. Journal of Chemical Physics, 2015, 142, 234306.	3.0	9
63	Scattering of NH3 and ND3 with rare gas atoms at low collision energy. Journal of Chemical Physics, 2015, 143, 184303.	3.0	24
64	Collision-induced absorption with exchange effects and anisotropic interactions: Theory and application to H2 â° H2. Journal of Chemical Physics, 2015, 142, 084305.	3.0	19
65	Rotational study of the NH3–CO complex: Millimeter-wave measurements and ab initio calculations. Journal of Chemical Physics, 2015, 142, 114308.	3.0	14
66	Imaging resonances in low-energy NO-He inelastic collisions. Science, 2015, 350, 787-790.	12.6	115
67	Rotationally inelastic scattering of ND ₃ with H ₂ as a probe of the intermolecular potential energy surface. Molecular Physics, 2015, 113, 3925-3933.	1.7	18
68	Rotationally Inelastic Scattering of Quantum-State-Selected ND ₃ withÂAr. Journal of Physical Chemistry A, 2015, 119, 5979-5987.	2.5	10
69	Resolving rainbows with superimposed diffraction oscillations in NO + rare gas scattering: experiment and theory. New Journal of Physics, 2015, 17, 055019.	2.9	28
70	Quantum dynamical resonances in low-energy CO(j = 0) + He inelastic collisions. Nature Chemi 7, 349-353.	stry, 2015	5, ₇₂
71	QUANTUM CALCULATION OF INELASTIC CO COLLISIONS WITH H. II. PURE ROTATIONAL QUENCHING OF HIGH ROTATIONAL LEVELS. Astrophysical Journal, 2015, 811, 27.	4.5	18
72	Simulating rotationally inelastic collisions using a direct simulation Monte Carlo method. Molecular Physics, 2015, 113, 3972-3978.	1.7	12

#	Article	IF	CITATIONS
73	Quantum mechanical calculation of the collision-induced absorption spectra of N2–N2 with anisotropic interactions. Journal of Chemical Physics, 2015, 142, 084306.	3.0	26
74	Rotationally inelastic scattering of OH by molecular hydrogen: Theory and experiment. Journal of Chemical Physics, 2015, 142, 204310.	3.0	34
75	Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms. Journal of Chemical Physics, 2015, 142, 204303.	3.0	11
76	Inelastic Scattering of CO with He: Polarization Dependent Differential State-to-State Cross Sections. Journal of Physical Chemistry A, 2015, 119, 12526-12537.	2.5	14
77	Direct Extraction of Alignment Moments from Inelastic Scattering Images. Journal of Physical Chemistry A, 2015, 119, 5925-5931.	2.5	10
78	Rotational study of the CH4–CO complex: Millimeter-wave measurements and ab initio calculations. Journal of Chemical Physics, 2015, 143, 154303.	3.0	11
79	High-Resolution Imaging of Velocity-Controlled Molecular Collisions Using Counterpropagating Beams. Physical Review Letters, 2014, 113, 263202.	7.8	36
80	Comment on "Communication: Benzene dimer—The free energy landscape―[J. Chem. Phys. 139, 201102 (2013)]. Journal of Chemical Physics, 2014, 140, 227101.	3.0	8
81	Potential energy surface and bound states of the NH3–Ar and ND3–Ar complexes. Journal of Chemical Physics, 2014, 141, 224303.	3.0	25
82	The interaction of $OH(\langle i\rangle X\langle i\rangle 2\hat{I})$ with H2: $\langle i\rangle Ab$ initio $\langle i\rangle$ potential energy surfaces and bound states. Journal of Chemical Physics, 2014, 141, 174309.	3.0	26
83	A theoretical and experimental study of pressure broadening of the oxygen A-band by helium. Journal of Chemical Physics, 2014, 140, 204314.	3.0	8
84	DYNAMICS OF CO IN AMORPHOUS WATER-ICE ENVIRONMENTS. Astrophysical Journal, 2014, 781, 16.	4.5	52
85	State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar. Nature Chemistry, 2014, 6, 216-221.	13.6	101
86	Predictions for water clusters from a first-principles two- and three-body force field. Journal of Chemical Physics, 2014, 140, 194101.	3.0	61
87	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>NH </mml:mi> <mml:mo stretchy="false"> (</mml:mo> <mml:mi>X </mml:mi> <mml:mtext>  </mml:mtext> <mml:mmultiscripts> <mml:r< td=""><td>ni>Ĵ£<td>nl:mi><mml< td=""></mml<></td></td></mml:r<></mml:mmultiscripts>	ni>Ĵ£ <td>nl:mi><mml< td=""></mml<></td>	nl:mi> <mml< td=""></mml<>
88	Three-Dimensional Ab Initio Potential Energy Surface for Hâ \in "CO($<$ i> $>$ XÌ $f<$ i> $<$ sup> $2<$ sup> $<$ i> $>$ A $<$ i> $>$ â \in ²). Journal of Physical Chemistry A, 2013, 117, 7571-7579.	2.5	27
89	Overtone vibrational spectroscopy in H2-H2O complexes: A combined high level theoretical <i>ab initio</i> , dynamical and experimental study. Journal of Chemical Physics, 2012, 137, 084301.	3.0	27
90	Scattering resonances in slow NH3–He collisions. Journal of Chemical Physics, 2012, 136, 074301.	3.0	51

#	Article	IF	Citations
91	Quantum-State Resolved Bimolecular Collisions of Velocity-Controlled OH with NO Radicals. Science, 2012, 338, 1060-1063.	12.6	114
92	Resonances in rotationally inelastic scattering of $OH(\langle i\rangle X\langle i\rangle 2\hat{l})$ with helium and neon. Journal of Chemical Physics, 2012, 136, 144308.	3.0	24
93	Cold and ultracold NH-NH collisions in magnetic fields. Physical Review A, 2011, 83, .	2.5	38
94	Rovibrational states of the H2O–H2 complex: An <i>ab initio</i> calculation. Journal of Chemical Physics, 2011, 134, 044314.	3.0	67
95	Comment on: The molecular symmetry group of the CO dimer and the assignments of the intermolecular vibrations, by: K.M.T. Yamada, J. Mol. Spectrosc. 254 (2009) 87. Journal of Molecular Spectroscopy, 2010, 259, 60-61.	1.2	2
96	Vibration–rotation-tunneling states of the benzene dimer: an ab initio study. Physical Chemistry Chemical Physics, 2010, 12, 8219.	2.8	72
97	Bound states of the OH(Î2)–HCl complex on <i>ab initio</i> diabatic potentials. Journal of Chemical Physics, 2009, 131, 124307.	3.0	24
98	Water trimer torsional spectrum from accurate <i>ab initio</i> and semiempirical potentials. Journal of Chemical Physics, 2008, 128, 014302.	3.0	29
99	Higher Energy States in the CO Dimer:  Millimeter-Wave Spectra and Rovibrational Calculations. Journal of Physical Chemistry A, 2007, 111, 12238-12247.	2.5	35
100	Predictions of the Properties of Water from First Principles. Science, 2007, 315, 1249-1252.	12.6	382
101	Ab initio potential-energy surface and rovibrational states of the HCN–HCl complex. Journal of Chemical Physics, 2006, 124, 204315.	3.0	13
102	New CO–CO interaction potential tested by rovibrational calculations. Journal of Chemical Physics, 2005, 122, 054306.	3.0	54
103	Ab initio computed diabatic potential energy surfaces of OH–HCl. Journal of Chemical Physics, 2005, 122, 244325.	3.0	40
104	Jahn–Teller effect in van der Waals complexes; Ar–C6H6+ and Ar–C6D6+. Journal of Chemical Physics, 2004, 120, 10069-10083.	3.0	4
105	Theoretical study of the He–HF+ complex. II. Rovibronic states from coupled diabatic potential energy surfaces. Journal of Chemical Physics, 2004, 120, 103-116.	3.0	8
106	Rovibronic spectroscopy of the van der Waals complex He–HCl+. Molecular Physics, 2004, 102, 2285-2295.	1.7	4
107	Method for the ab initio calculation of intermolecular potentials of ionic clusters: Test on Rg–CO+, Rg=He, Ne, Ar. Journal of Chemical Physics, 2003, 118, 1110-1118.	3.0	16
108	An ab initio CO dimer interaction potential and the computation of the rovibrational spectrum of (CO)2. Physical Chemistry Chemical Physics, 2003, 5, 4767.	2.8	38

#	Article	IF	Citations
109	Diabatic intermolecular potentials and bound states of open-shell atom–molecule dimers: Application to the F([sup 2]P)–H[sub 2] complex. Journal of Chemical Physics, 2003, 118, 7340.	3.0	22
110	Spectrum and vibrational predissociation of the HF dimer. II. Photodissociation cross sections and product state distributions. Journal of Chemical Physics, 2003, 119, 286-292.	3.0	13
111	Singlet–triplet excitation spectrum of the CO–He complex. II. Photodissociation and bound-free CO(a 3Îâ†X 1Σ+) transitions. Journal of Chemical Physics, 2003, 119, 141-148.	3.0	9
112	Singlet–triplet excitation spectrum of the CO–He complex. I. Potential surfaces and bound–bound CO(a 3Îâ†X 1Σ+) transitions. Journal of Chemical Physics, 2003, 119, 131-140.	3.0	18
113	Spectrum and vibrational predissociation of the HF dimer. I. Bound and quasibound states. Journal of Chemical Physics, 2003, 119, 277-285.	3.0	28
114	Photodissociation of the methane–argon complex. I.Ab initiointermolecular potential depending on the methane vibrational coordinates. Journal of Chemical Physics, 2002, 117, 7551-7561.	3.0	13
115	Terahertz vibration–rotation–tunneling spectroscopy of water clusters in the translational band region of liquid water. Journal of Chemical Physics, 2001, 114, 3994-4004.	3.0	40
116	The 583.2 GHz torsional hot-band of (D2O)3. Journal of Chemical Physics, 2001, 114, 3988-3993.	3.0	19
117	Ab initio prediction of the vibration-rotation-tunneling spectrum of HCl–(H2O)2. Journal of Chemical Physics, 2001, 115, 3604-3613.	3.0	7
118	Intramonomer correlation contributions to first-order exchange nonadditivity in trimers. Journal of Chemical Physics, 2000, 112, 3159-3169.	3.0	14
119	Water pair potential of near spectroscopic accuracy. II. Vibration–rotation–tunneling levels of the water dimer. Journal of Chemical Physics, 2000, 113, 6702-6715.	3.0	109
120	Water Pair and Three-Body Potential of Spectroscopic Quality from Ab Initio Calculations. Physical Review Letters, 2000, 84, 4072-4075.	7.8	102
121	Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients. Journal of Chemical Physics, 2000, 113, 6687-6701.	3.0	164
122	Intermolecular Potentials, Internal Motions, and Spectra of van der Waals and Hydrogen-Bonded Complexes. Chemical Reviews, 2000, 100, 4109-4144.	47.7	161
123	Pseudorotation tunneling in several water trimer isotopomers. Journal of Chemical Physics, 1999, 110, 823-831.	3.0	24
124	Quantitative characterization of the (D2O)3 torsional manifold by terahertz laser spectroscopy and theoretical analysis. Journal of Chemical Physics, 1999, 110, 4369-4381.	3.0	53
125	Quantitative characterization of the water trimer torsional manifold by terahertz laser spectroscopy and theoretical analysis. II. (H2O)3. Journal of Chemical Physics, 1999, 111, 7789-7800.	3.0	49
126	Density functional calculations of molecular hyperfine interactions in the zero order regular approximation for relativistic effects. Journal of Chemical Physics, 1998, 108, 4783-4796.	3.0	322

#	Article	IF	Citations
127	Infrared spectroscopy and ab initio potential energy surface for Ne–C2H2 and Ne–C2HD complexes. Journal of Chemical Physics, 1998, 109, 8968-8979.	3.0	41
128	Vibrational overtones in the electronic ground state of the benzene-Ar complex: A combined experimental and theoretical analysis. Journal of Chemical Physics, 1998, 108, 8408-8417.	3.0	31
129	High-resolution spectroscopy of 4-fluorostyrene-rare gas van der Waals complexes: Results and comparison with theoretical calculations. Journal of Chemical Physics, 1998, 108, 1836-1850.	3.0	17
130	Symmetry-adapted perturbation theory of nonadditive three-body interactions in van der Waals molecules. II. Application to the Ar2–HF interaction. Journal of Chemical Physics, 1998, 108, 579-589.	3.0	29
131	Vibrational predissociation of the ND3-Ar Van der Waals complex: Comparison with NH3-Ar. Journal of Chemical Physics, 1997, 106, 9141-9154.	3.0	8
132	Ab initio potential-energy surface and rotationally inelastic integral cross sections of the Ar–CH4 complex. Journal of Chemical Physics, 1997, 107, 902-913.	3.0	62
133	Density functional calculations of molecular g-tensors in the zero-order regular approximation for relativistic effects. Journal of Chemical Physics, 1997, 107, 2488-2498.	3.0	283
134	A new He–CO interaction energy surface with vibrational coordinate dependence. I. Ab initio potential and infrared spectrum. Journal of Chemical Physics, 1997, 107, 9921-9928.	3.0	109
135	Entrance Channel Effects in the Reaction of Aligned Ca(1P) with HCl. Journal of Physical Chemistry A, 1997, 101, 7558-7566.	2.5	11
136	Ab InitioPotential Energy Surface and Infrared Spectrum of the Neâ^'CO Complex. Journal of Physical Chemistry A, 1997, 101, 4690-4698.	2.5	48
137	Differential cross sections for rotational excitation of NH3 by collisions with Ar and He: Close coupling results and comparison with experiment. Journal of Chemical Physics, 1996, 105, 3079-3088.	3.0	19
138	Ab initiocollisionâ€induced polarizability, polarized and depolarized Raman spectra, and second dielectric virial coefficient of the helium diatom. Journal of Chemical Physics, 1996, 104, 6997-7007.	3.0	64
139	Tunneling dynamics, symmetry, and farâ€infrared spectrum of the rotating water trimer. II. Calculations and experiments. Journal of Chemical Physics, 1996, 105, 8051-8063.	3.0	72
140	Unambiguous assignment of the van der Waals modes of benzene–Ar by analysis of the rotationally resolved UVâ€spectra and comparison with multidimensional calculations. Journal of Chemical Physics, 1996, 104, 882-898.	3.0	53
141	Semiclassical calculations on the energy dependence of the steric effect for the reaction Ca(1D)+CH3F(jkm=111)â†'CaF+CH3. Journal of Chemical Physics, 1996, 105, 2247-2262.	3.0	7
142	Vibration and rotation of CO in C60 and predicted infrared spectrum. Journal of Chemical Physics, 1996, 104, 832-847.	3.0	37
143	Tunneling dynamics, symmetry, and farâ€infrared spectrum of the rotating water trimer. I. Hamiltonian and qualitative model. Journal of Chemical Physics, 1996, 105, 8034-8050.	3.0	68
144	Stark effect and dipole moments of the ammonia dimer in different vibration–rotation–tunneling states. Journal of Chemical Physics, 1996, 104, 3898-3906.	3.0	20

#	Article	IF	Citations
145	Semiclassical Calculations on the Energy Dependence of the Steric Effect for the Reactions Ca $(1D)$ + CH3X (jkm= 111) \hat{a} † CaX + CH3with X = F, Cl, Br. The Journal of Physical Chemistry, 1996, 100, 16072-16081.	2.9	13
146	Ab initio potential energy surface and nearâ€infrared spectrum of the He–C2H2 complex. Journal of Chemical Physics, 1995, 102, 8385-8397.	3.0	68
147	Symmetryâ€adapted perturbation theory of nonadditive threeâ€body interactions in van der Waals molecules. I. General theory. Journal of Chemical Physics, 1995, 103, 8058-8074.	3.0	106
148	Ab initio potential energy surface, infrared spectrum, and second virial coefficient of the He–CO complex. Journal of Chemical Physics, 1995, 103, 321-332.	3.0	78
149	Fragmentation dynamics of the vibrationally excited ammonia–argon van der Waals complex. Journal of Chemical Physics, 1995, 103, 4138-4149.	3.0	8
150	Intermolecular potential and rovibrational levels of Ar–HF from symmetryâ€adapted perturbation theory. Journal of Chemical Physics, 1995, 103, 6076-6092.	3.0	66
151	Structure, internal mobility, and spectrum of the ammonia dimer: Calculation of the vibration–rotationâ€tunneling states. Journal of Chemical Physics, 1994, 101, 8430-8442.	3.0	97
152	The nature of monomer inversion in the ammonia dimer. Journal of Chemical Physics, 1994, 101, 8443-8454.	3.0	38
153	On the energy dependence of the steric effect for atom–molecule reactive scattering. II. The reaction Ca(1D)+CH3F(JKM=111)→CaF(2Î)+CH3. Journal of Chemical Physics, 1994, 101, 7603-7617.	3.0	13
154	Is the NH3–NH3riddle solved?. Faraday Discussions, 1994, 97, 43-55.	3.2	16
155	From Intermolecular Potentials to the Spectra of van der Waals Molecules, and Vice Versa. Chemical Reviews, 1994, 94, 1931-1974.	47.7	235
156	Nearâ€infrared spectrum and rotational predissociation dynamics of the He–HF complex from an ab initio symmetryâ€adapted perturbation theory potential. Journal of Chemical Physics, 1994, 101, 2825-2835.	3.0	30
157	Symmetryâ€adapted perturbation theory calculation of the He–HF intermolecular potential energy surface. Journal of Chemical Physics, 1994, 101, 2811-2824.	3.0	74
158	van der Waals rovibration levels and the high resolution spectrum of the argon–benzene dimer. Journal of Chemical Physics, 1993, 98, 5327-5336.	3.0	71
159	Quantum calculation of vibrational states in the aniline–argon van der Waals cluster. Journal of Chemical Physics, 1993, 98, 2709-2719.	3.0	40
160	Computational exploration of the sixâ€dimensional vibration–rotation–tunneling dynamics of (NH3)2. Journal of Chemical Physics, 1992, 97, 4750-4763.	3.0	64
161	The NH3 umbrella motion in the Arî—,NH3 dimer. Chemical Physics, 1992, 165, 47-55.	1.9	22
162	Ab initio potential energy surfaces of Ar–H2O and Ar–D2O. Journal of Chemical Physics, 1991, 94, 8096-8104.	3.0	41

#	Article	IF	Citations
163	Ab initio potential energy surfaces of Ar–NH3 for different NH3 umbrella angles. Journal of Chemical Physics, 1991, 94, 491-500.	3.0	49
164	Lattice dynamics of αâ€CO from an ab initio potential. Journal of Chemical Physics, 1991, 94, 8402-8407.	3.0	25
165	The van der Waals rovibrational states of the Ar–NH3 dimer. Journal of Chemical Physics, 1991, 94, 501-510.	3.0	33
166	The infrared photodissociation spectra and the internal mobility of SF6, SiF4, and SiH4dimers. Journal of Chemical Physics, 1990, 92, 2837-2847.	3.0	27
167	An ab initio intermolecular potential for the carbon monoxide dimer (CO)2. Journal of Chemical Physics, 1990, 92, 7498-7504.	3.0	112
168	Vibron band structure in chlorinated benzene crystals: Lattice dynamics calculations and Raman spectra of 1,2,4,5â€tetrachlorobenzene. Journal of Chemical Physics, 1988, 89, 4023-4034.	3.0	12
169	The O2–O2 dimer: Magnetic coupling and spectrum. Journal of Chemical Physics, 1987, 87, 5346-5360.	3.0	39
170	Magnetic coupling and dynamics in solid \hat{l}_{\pm} and $\hat{l}^2 \hat{a} \in \mathbb{O}2$. I. An ab initio theoretical approach. Journal of Chemical Physics, 1987, 86, 3583-3596.	3.0	45
171	Magnetic coupling and dynamics in solid \hat{l}_{\pm} and $\hat{l}^2 \hat{a} \in O2$. II. Prediction of magnetic field effects. Journal of Chemical Physics, 1987, 86, 3597-3601.	3.0	16
172	An improved intermolecular potential for nitrogen. Journal of Chemical Physics, 1986, 84, 1629-1635.	3.0	142
173	Infrared spectra of the van der Waals molecule (N2)2. Molecular Physics, 1985, 55, 11-32.	1.7	42
174	Ab initio description of large amplitude motions in solid N2. I. Librons in the ordered \hat{l}_{\pm} and \hat{l}_{3} phases. Journal of Chemical Physics, 1984, 81, 3648-3657.	3.0	39
175	Ab initio description of large amplitude motions in solid N2. III. Libron–phonon coupling. Journal of Chemical Physics, 1984, 81, 4118-4126.	3.0	34
176	Abinitiodescription of large amplitude motions in solid N2. II. Librons in the βâ€phase and the α–β phase transition. Journal of Chemical Physics, 1984, 81, 3658-3665.	3.0	47
177	(Heisenberg) exchange and electrostatic interactions between O2molecules: Anabinitiostudy. Journal of Chemical Physics, 1984, 81, 1929-1939.	3.0	117
178	Hindered internal rotations in Van der Waals molecules and molecular crystals. International Journal of Quantum Chemistry, 1983, 23, 1091-1100.	2.0	5
179	Fineâ€structure spectrum of O2–rare gas van der Waals molecules. Journal of Chemical Physics, 1983, 79, 1170-1175.	3.0	25
180	Ab InitioCalculation of the Heisenberg Exchange Interaction betweenO2Molecules. Physical Review Letters, 1983, 51, 1167-1170.	7.8	93

#	Article	IF	Citations
181	Quantum dynamics of non-rigid systems comprising two polyatomic fragments. Molecular Physics, 1983, 50, 1025-1043.	1.7	197
182	Quantum dynamics of the van der Waals molecule (N2)2: Anab initiotreatment. Journal of Chemical Physics, 1982, 77, 5664-5681.	3.0	101
183	Dynamical and optical properties of the ethylene crystal: Selfâ€consistent phonon calculations using an   ab initio'' intermolecular potential. Journal of Chemical Physics, 1981, 75, 1451-1458.	3.0	12
184	Hartree–Fock–Slater–LCAO calculations on the Cu(II) bis(dithiocarbamate) complex; magnetic coupling parameters and optical spectrum. Journal of Chemical Physics, 1980, 73, 1306-1312.	3.0	39
185	N2â \in "N2 interaction potential from ab initio calculations, with application to the structure of (N2)2. Journal of Chemical Physics, 1980, 72, 6107-6116.	3.0	243
186	Lattice dynamics of solid N2 with an ab initio intermolecular potential. Journal of Chemical Physics, 1980, 73, 5305-5309.	3.0	56
187	Multipole moments, polarizabilities and anisotropic long range interaction coefficients for N2. Molecular Physics, 1980, 39, 407-425.	1.7	135
188	Anisotropy of long range interactions between linear molecules: H2-H2 and H2-He. Molecular Physics, 1979, 37, 159-180.	1.7	121
189	Lattice dynamics of the ethylene crystal with interaction potentials fromabinitiocalculations. Journal of Chemical Physics, 1978, 69, 5288-5300.	3.0	38
190	Calculation of exchange forces between molecules by application of the Hellmann-Feynman theorem. Molecular Physics, 1977, 33, 1367-1377.	1.7	3
191	Ab initio Studies of long range interactions between ethylene molecules in the multipole expansion. Theoretica Chimica Acta, 1977, 46, 39-62.	0.8	53
192	Quantum theoretical calculations of van der Waals interactions between molecules. Anisotropic long range interactions. International Journal of Quantum Chemistry, 1977, 11, 959-970.	2.0	85
193	Ab initio Studies of long range interactions between ethylene molecules in the multipole expansion. Theoretica Chimica Acta, 1977, 46, 39-62.	0.8	24
194	Abinitiovalenceâ€bond calculations of the van der Waals interactions between Ï€ systems: The ethylene dimer. Journal of Chemical Physics, 1975, 62, 3326-3339.	3.0	59
195	Transformation properties of many-electron wave functions with special attention to the relation between pair-correlated DODS and configuration interaction. International Journal of Quantum Chemistry, 1974, 8, 715-732.	2.0	13
196	Transformation Properties of Antisymmetric Spin Eigenfunctions under Linear Mixing of the Orbitals. Journal of Chemical Physics, 1972, 57, 2498-2505.	3.0	32
197	Correlated rotational excitations in NO-CO inelastic collisions. Journal of Chemical Physics, 0, , .	3.0	4