Baojiang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8069539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorusâ€Doped Carbon Nitride Tubes with a Layered Microâ€nanostructure for Enhanced Visibleâ€Light Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 1830-1834.	13.8	869
2	Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 2508-2515.	13.7	685
3	Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chemical Communications, 2012, 48, 2858.	4.1	515
4	Wellâ€Ordered Largeâ€Pore Mesoporous Anatase TiO ₂ with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance. Advanced Functional Materials, 2011, 21, 1922-1930.	14.9	431
5	P-doped tubular g-C3N4 with surface carbon defects: Universal synthesis and enhanced visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 218, 664-671.	20.2	396
6	A Promoted Charge Separation/Transfer System from Cu Single Atoms and C ₃ N ₄ Layers for Efficient Photocatalysis. Advanced Materials, 2020, 32, e2003082.	21.0	333
7	Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation. Angewandte Chemie - International Edition, 2021, 60, 4815-4822.	13.8	233
8	Enhanced Photocatalytic Activity and Electron Transfer Mechanisms of Graphene/TiO ₂ with Exposed {001} Facets. Journal of Physical Chemistry C, 2011, 115, 23718-23725.	3.1	223
9	Facile strategy for controllable synthesis of stable mesoporous black TiO ₂ hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 7495-7502.	10.3	198
10	Phosphorusâ€Doped Carbon Nitride Tubes with a Layered Microâ€nanostructure for Enhanced Visibleâ€Light Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2016, 128, 1862-1866.	2.0	173
11	Facile synthesis of sheet-like ZnO assembly composed of small ZnO particles for highly efficient photocatalysis. Journal of Materials Chemistry A, 2013, 1, 5700.	10.3	170
12	Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction. Applied Surface Science, 2012, 258, 3438-3443.	6.1	163
13	In Situ Growth of TiO ₂ in Interlayers of Expanded Graphite for the Fabrication of TiO ₂ –Graphene with Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2011, 17, 8379-8387.	3.3	135
14	Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction. Journal of Hazardous Materials, 2016, 309, 249-258.	12.4	131
15	Fabrication of a palladium nanoparticle/graphene nanosheet hybrid via sacrifice of a copper template and its application in catalytic oxidation of formic acid. Chemical Communications, 2011, 47, 2014.	4.1	129
16	Facile Synthesis of High-Crystallinity Graphitic Carbon/Fe ₃ C Nanocomposites As Counter Electrodes for High-Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 3663-3670.	8.0	127
17	Synergistic Effect of Tungsten Carbide and Palladium on Graphene for Promoted Ethanol Electrooxidation. ACS Applied Materials & Interfaces, 2013, 5, 6571-6579.	8.0	108
18	Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Research, 2014, 7, 731-742.	10.4	102

#	Article	IF	CITATIONS
19	Self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts. Applied Catalysis B: Environmental, 2017, 206, 336-343.	20.2	102
20	Wellâ€Dispersed CoS Nanoparticles on a Functionalized Graphene Nanosheet Surface: A Counter Electrode of Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 474-482.	3.3	100
21	Thin carbon layer coated Ti ³⁺ -TiO ₂ nanocrystallites for visible-light driven photocatalysis. Nanoscale, 2015, 7, 5035-5045.	5.6	97
22	Graphene Quantumâ€Ðotâ€Modified Hexagonal Tubular Carbon Nitride for Visibleâ€Light Photocatalytic Hydrogen Evolution. ChemCatChem, 2018, 10, 1330-1335.	3.7	95
23	Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation. Applied Catalysis B: Environmental, 2018, 221, 235-242.	20.2	92
24	Nitrogen-doped Co/Co9S8/partly-graphitized carbon as durable catalysts for oxygen reduction in microbial fuel cells. Journal of Power Sources, 2016, 307, 1-10.	7.8	87
25	In Situ Crystallization of Active NiOOH/CoOOH Heterostructures with Hydroxide Ion Adsorption Sites on Velutipes-like CoSe/NiSe Nanorods as Catalysts for Oxygen Evolution and Cocatalysts for Methanol Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 686-697.	8.0	87
26	A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors. RSC Advances, 2015, 5, 42430-42437.	3.6	86
27	Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 305-312.	10.3	85
28	Single-crystal TiO2 nanorods assembly for efficient and stable cocatalyst-free photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 229, 1-7.	20.2	82
29	Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 6992-7002.	8.0	78
30	Assembly of TiO2 ultrathin nanosheets with surface lattice distortion for solar-light-driven photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 239, 317-323.	20.2	77
31	Black N/Hâ€TiO ₂ Nanoplates with a Flowerâ€Like Hierarchical Architecture for Photocatalytic Hydrogen Evolution. ChemSusChem, 2016, 9, 2841-2848.	6.8	73
32	Porous Carbon Nitride Thin Strip: Precise Carbon Doping Regulating Delocalized Ï€â€Electron Induces Elevated Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2006622.	10.0	73
33	GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors. Nanoscale, 2016, 8, 2418-2427.	5.6	69
34	Inorganic acid-derived hydrogen-bonded organic frameworks to form nitrogen-rich carbon nitrides for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 21979-21985.	10.3	69
35	Facile fabrication of high quality graphene from expandable graphite: simultaneous exfoliation and reduction. Chemical Communications, 2010, 46, 4920.	4.1	68
36	Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Research, 2014, 7, 1280-1290.	10.4	66

#	Article	IF	CITATIONS
37	Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2018, 513, 82-91.	9.4	65
38	Porous carbon@MnO2 and nitrogen-doped porous carbon from carbonized loofah sponge for asymmetric supercapacitor with high energy and power density. Journal of Electroanalytical Chemistry, 2016, 763, 90-96.	3.8	64
39	NaYF4:Er3+/Yb3+–graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 20381.	6.7	63
40	Synergetic enhancement of surface reactions and charge separation over holey C3N4/TiO2 2D heterojunctions. Science Bulletin, 2021, 66, 275-283.	9.0	61
41	Recent progress of electrocatalysts for oxygen reduction in fuel cells. Journal of Colloid and Interface Science, 2022, 607, 791-815.	9.4	55
42	Inâ€Situ Fabrication of Ag/Ag ₃ PO ₄ /Graphene Triple Heterostructure Visibleâ€Light Photocatalyst through Grapheneâ€Assisted Reduction Strategy. ChemCatChem, 2013, 5, 1359-1367.	3.7	54
43	Single Metal Atom Decorated Carbon Nitride for Efficient Photocatalysis: Synthesis, Structure, and Applications. Solar Rrl, 2021, 5, 2000609.	5.8	51
44	Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+. Dalton Transactions, 2013, 42, 7971.	3.3	47
45	Glucose-mediated solution–solid route for easy synthesis of Ag/ZnO particles with superior photocatalytic activity and photostability. Journal of Alloys and Compounds, 2011, 509, 6935-6941.	5.5	46
46	Promising biomass-derived hierarchical porous carbon material for high performance supercapacitor. RSC Advances, 2017, 7, 10385-10390.	3.6	46
47	Porous Plate-like MoP Assembly as an Efficient pH-Universal Hydrogen Evolution Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 49596-49606.	8.0	46
48	TiO2-on-C3N4 double-shell microtubes: In-situ fabricated heterostructures toward enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 572, 22-30.	9.4	46
49	Development of nickel-incorporated MCM-41–carbon composites and their application in nitrophenol reduction. Journal of Materials Chemistry A, 2019, 7, 9618-9628.	10.3	43
50	A Unique Fe–N ₄ Coordination System Enabling Transformation of Oxygen into Superoxide for Photocatalytic Cī£¿H Activation with High Efficiency and Selectivity. Advanced Materials, 2022, 34, e2200612.	21.0	43
51	A novel Ag/graphene composite: facile fabrication and enhanced antibacterial properties. Journal of Materials Science, 2013, 48, 1980-1985.	3.7	40
52	Internal-electric-field induced high efficient type-I heterojunction in photocatalysis-self-Fenton reaction: Enhanced H2O2 yield, utilization efficiency and degradation performance. Journal of Colloid and Interface Science, 2022, 608, 2075-2087.	9.4	37
53	Layer Stacked Iodine and Phosphorus Coâ€doped C ₃ N ₄ for Enhanced Visibleâ€Light Photocatalytic Hydrogen Evolution. ChemCatChem, 2017, 9, 4083-4089.	3.7	36
54	Synthesis and applications of graphite carbon sphere with uniformly distributed magnetic Fe3O4 nanoparticles (MGCSs) and MGCS@Ag, MGCS@TiO2. Journal of Materials Chemistry, 2010, 20, 4802.	6.7	35

#	Article	IF	CITATIONS
55	ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution. Scientific Reports, 2015, 5, 8858.	3.3	34
56	2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors. Nanoscale, 2016, 8, 10166-10176.	5.6	34
57	Molybdenum phosphide as a novel and stable catalyst for dry reforming of methane. Catalysis Science and Technology, 2016, 6, 7996-8004.	4.1	34
58	In-situ chemical vapor deposition to fabricate Cuprous oxide/copper sulfide core-shell flowers with boosted and stable wide-spectral region photocatalytic performance. Journal of Colloid and Interface Science, 2020, 570, 143-152.	9.4	34
59	Synthesis and application of hollow magnetic graphitic carbon microspheres with/without TiO2 nanoparticle layer on the surface. Chemical Communications, 2010, 46, 6276.	4.1	31
60	Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production. Science China Materials, 2015, 58, 363-369.	6.3	31
61	Facile Synthesis of Porous Zn ₂ Ti ₃ O ₈ Nanorods for Photocatalytic Overall Water Splitting. ChemCatChem, 2014, 6, 2258-2262.	3.7	30
62	ZIF-67-Derived Dodecahedral Co@N-Doped Graphitized Carbon Protected by a Porous FeS ₂ Thin-Layer as an Efficient Catalyst to Promote the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 4194-4206.	6.7	30
63	Large-scale synthesis of stable mesoporous black TiO ₂ nanosheets for efficient solar-driven photocatalytic hydrogen evolution via an earth-abundant low-cost biotemplate. RSC Advances, 2016, 6, 50506-50512.	3.6	29
64	Non-metal boron modified carbon nitride tube with enhanced visible light-driven photocatalytic performance. Materials Research Bulletin, 2019, 110, 18-23.	5.2	28
65	Metal-organic frameworks loaded on phosphorus-doped tubular carbon nitride for enhanced photocatalytic hydrogen production and amine oxidation. Journal of Colloid and Interface Science, 2021, 590, 1-11.	9.4	28
66	Encapsulation of Pd Nanoparticles in Covalent Triazine Frameworks for Enhanced Photocatalytic CO ₂ Conversion. ACS Sustainable Chemistry and Engineering, 2021, 9, 12646-12654.	6.7	28
67	Recovery of silicon from sewage sludge for production of high-purity nano-SiO2. Chemosphere, 2013, 90, 2332-2339.	8.2	26
68	A facile and green synthesis route towards two-dimensional TiO2@Ag heterojunction structure with enhanced visible light photocatalytic activity. CrystEngComm, 2013, 15, 5821.	2.6	25
69	Ti3+-self-doped TiO2 with multiple crystal-phases anchored on acid-pickled ZIF-67-derived Co3O4@N-doped graphitized-carbon as a durable catalyst for oxygen reduction in alkaline and acid media. Chemical Engineering Journal, 2021, 403, 126441.	12.7	24
70	Hydrogenated Cu ₂ OAu@CeO ₂ Z-scheme catalyst for photocatalytic oxidation of amines to imines. Catalysis Science and Technology, 2018, 8, 5535-5543.	4.1	23
71	Promoting the spatial charge separation by building porous ZrO2@TiO2 heterostructure toward photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 561, 568-575.	9.4	23
72	Pure phase orthorhombic MgTi ₂ O ₅ photocatalyst for H ₂ production. RSC Advances, 2015, 5, 106151-106155.	3.6	22

#	Article	IF	CITATIONS
73	In situ synthesis and photoluminescence of Eu3+ doped Y(OH)3@β-NaYF4 core–shell nanotubes. Chemical Communications, 2011, 47, 8019.	4.1	21
74	Facile Strategy to Fabricate Uniform Black TiO ₂ Nanothorns/Graphene/Black TiO ₂ Nanothorns Sandwichlike Nanosheets for Excellent Solarâ€Driven Photocatalytic Performance. ChemCatChem, 2016, 8, 3240-3246.	3.7	21
75	Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production. Materials Today Energy, 2022, 24, 100926.	4.7	20
76	Structure and Properties of Noncrystalline Nano-Al(OH) ₃ Reclaimed from Carbonized Residual Wastewater Treatment Sludge. Environmental Science & Technology, 2012, 46, 4560-4566.	10.0	19
77	Hollow palladium nanospheres with porous shells supported on graphene as enhanced electrocatalysts for formic acid oxidation. Physical Chemistry Chemical Physics, 2013, 15, 19353.	2.8	19
78	Intermittent microwave heating-promoted rapid fabrication of sheet-like Ag assemblies and small-sized Ag particles and their use as co-catalyst of ZnO for enhanced photocatalysis. Journal of Materials Chemistry A, 2014, 2, 3015.	10.3	19
79	Capture of Iodide by Bismuth Vanadate and Bismuth Oxide: An Insight into the Process and its Aftermath. ChemSusChem, 2018, 11, 1486-1493.	6.8	19
80	Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation. Angewandte Chemie, 2021, 133, 4865-4872.	2.0	19
81	A facile solution phase synthesis of directly ordering monodisperse FePt nanoparticles. Nano Research, 2022, 15, 446-451.	10.4	19
82	Carbon quantum dot/mixed crystal TiO ₂ composites via a hydrogenation process: an efficient photocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 96803-96808.	3.6	18
83	Homojunction and defect synergy-mediated electron–hole separation for solar-driven mesoporous rutile/anatase TiO ₂ microsphere photocatalysts. RSC Advances, 2019, 9, 7870-7877.	3.6	18
84	Constructing Pd-N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution. Nano Research, 2022, 15, 2928-2934.	10.4	18
85	In situ synthesis and high adsorption performance of MoO ₂ /Mo ₄ O ₁₁ and MoO ₂ /MoS ₂ composite nanorods by reduction of MoO ₃ . Dalton Transactions, 2015, 44, 6224-6228.	3.3	17
86	Gelatin-assisted synthesis of ZnS hollow nanospheres: the microstructure tuning, formation mechanism and application for Pt-free photocatalytic hydrogen production. CrystEngComm, 2017, 19, 461-468.	2.6	17
87	Efficient Photocatalytic Hydrogen Evolution over TiO2-X Mesoporous Spheres-ZnO Nanorods Heterojunction. Nanomaterials, 2020, 10, 2096.	4.1	17
88	UiO-66-NH ₂ Octahedral Nanocrystals Decorated with ZnFe ₂ O ₄ Nanoparticles for Photocatalytic Alcohol Oxidation. ACS Applied Nano Materials, 2022, 5, 2231-2240.	5.0	17
89	A green route to synthesize novel Ag/C antibacterial agent. Materials Research Bulletin, 2012, 47, 458-463.	5.2	16
90	Fe ₃ W ₃ C/WC/Graphitic Carbon Ternary Nanojunction Hybrids for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 726-733.	6.8	16

#	Article	IF	CITATIONS
91	Synchronization iodine surface modification and lattice doping porous carbon nitride for photocatalytic hydrogen production. Applied Surface Science, 2019, 481, 1089-1095.	6.1	15
92	Construct α-Fe2O3/rGO/PS composite structure for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-persulfate activation coupling system. Journal of Alloys and Compounds, 2022, 898, 162829.	5.5	15
93	Engineering of Single Atomic Cu-N ₃ Active Sites for Efficient Singlet Oxygen Production in Photocatalysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 58596-58604.	8.0	15
94	Anatase TiO2 pillar–nanoparticle composite fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Dalton Transactions, 2012, 41, 12683.	3.3	14
95	A Platinum–Vanadium Nitride/Porous Graphitic Nanocarbon Composite as an Excellent Catalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1813-1820.	3.4	14
96	A hybridized heterojunction structure between TiO2nanorods and exfoliated graphitic carbon-nitride sheets for hydrogen evolution under visible light. CrystEngComm, 2016, 18, 6875-6880.	2.6	13
97	Commercial ZnO and its hybrid with Ag nanoparticles: Photocatalytic performance and relationship with structure. Chemical Physics Letters, 2017, 679, 137-145.	2.6	13
98	Co8FeS8 wrapped in Auricularia-derived N-doped carbon with a micron-size spherical structure as an efficient cathode catalyst for strengthening charge transfer and bioelectricity generation. Journal of Colloid and Interface Science, 2020, 567, 65-74.	9.4	13
99	A New Combustion Route to Synthesize Mixed Valence Vanadium Oxide Heterojunction Composites as Visibleâ€Lightâ€Driven Photocatalysts. ChemCatChem, 2014, 6, 2553-2559.	3.7	12
100	Efficient Suzuki-Miyaura cross-coupling reaction by loading trace Pd nanoparticles onto copper-complex-derived Cu/C-700 solid support. Journal of Colloid and Interface Science, 2022, 608, 2463-2471.	9.4	12
101	Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation. Materials Research Bulletin, 2014, 49, 480-486.	5.2	10
102	Synthesis of metallic copper modified g-C3N4 by molecular self-assembly structure and its combined catalytic performance with activated sludge. Journal of Hazardous Materials, 2020, 388, 121754.	12.4	10
103	Interfacial engineering by creating Cu-based ternary heterostructures on C ₃ N ₄ tubes towards enhanced photocatalytic oxidative coupling of benzylamines. RSC Advances, 2020, 10, 28059-28065.	3.6	10
104	Enhanced Charge Separation and Transfer of Fe 2 O 3 @Nitrogenâ€Rich Carbon Nitride Tubes for Photocatalytic Water Splitting. Energy Technology, 2020, 8, 2000108.	3.8	9
105	Moltenâ€Salt Technology Application for the Synthesis of Photocatalytic Materials. Energy Technology, 2021, 9, 2000945.	3.8	9
106	Supramolecular precursor derived loofah sponge-like Fe2Ox/C for effective synergistic reaction of Fenton and photocatalysis. Nano Research, 2022, 15, 1949-1958.	10.4	9
107	Enhancing the heterojunction component-interaction by in-situ hydrothermal growth toward photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 614, 367-377.	9.4	9
108	Fully conversing and highly selective oxidation of benzene to phenol based on MOFs-derived CuO@CN photocatalyst. Chinese Chemical Letters, 2023, 34, 107490.	9.0	9

#	Article	IF	CITATIONS
109	Photoluminescence and photocatalytic activity of flowerlike hierarchical TiO2:Sm3+ microspheres. Materials Research Bulletin, 2014, 50, 203-208.	5.2	8
110	A simple and green method to prepare non-typical yolk/shell nanoreactor with dual-shells and multiple-cores: Enhanced catalytic activity and stability in Fenton-like reaction. Journal of Hazardous Materials, 2022, 436, 129234.	12.4	8
111	Pt loaded onto silicon carbide/porous carbon hybrids as an electrocatalyst in the methanol oxidation reaction. RSC Advances, 2014, 4, 51272-51279.	3.6	7
112	Nanocrystalline tungstic carbide/graphitic carbon composite: synthesis, characterization, and its application as an effective Pt catalyst support for methanol oxidation. Journal of Solid State Electrochemistry, 2014, 18, 2225-2232.	2.5	6
113	The fabrication and the characterization of a TiO2/titanate nanohybrid for efficient hydrogen evolution. RSC Advances, 2015, 5, 13011-13015.	3.6	6
114	A versatile salicylic acid precursor method for preparing titanate microspheres. Science China Materials, 2015, 58, 106-113.	6.3	6
115	Inâ€situ Platinum Plasmon Resonance Effect Prompt Titanium Dioxide Nanocube Photocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2019, 14, 592-596.	3.3	6
116	A generalized strategy for synthesizing crystalline bismuth-containing nanomaterials. Nanoscale, 2020, 12, 8277-8284.	5.6	6
117	Two-dimensional assembly structure of graphene and TiO 2 nanosheets from titanic acid with enhanced visible-light photocatalytic performance. Chemical Physics Letters, 2016, 653, 190-195.	2.6	5
118	Novel synthesis of dispersed nickel phosphide nanospheres on carbon support via carbothermal reduction route. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 812-818.	1.6	5
119	A facile route for large-scale synthesis of molybdenum phosphide nanoparticles with high surface area. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 1159-1164.	1.6	5
120	Colloidal lanthanide-doped NaLuF4:Ln3+ nanocrystals: Synthesis, energy transfer, and tunable luminescence properties. Journal of Fluorine Chemistry, 2013, 153, 61-67.	1.7	4
121	A general strategy toward the large-scale synthesis of the noble metal-oxide nanocrystal hybrids with intimate interfacial contact for the catalytic reduction of p-nitrophenol and photocatalytic degradation of pollutants. Research on Chemical Intermediates, 2017, 43, 4759-4779.	2.7	4
122	Synergetic Effect of WC/Porous Graphite Carbon Supports on Electrocatalytic Reactivity of Pt for Methanol Electrooxidation. Science of Advanced Materials, 2013, 5, 1709-1717.	0.7	4
123	Engineering of SnO2/TiO2 heterojunction compact interface with efficient charge transfer pathway for photocatalytic hydrogen evolution. Chinese Chemical Letters, 2023, 34, 107125.	9.0	4
124	Creation of Mo active sites on indium oxide microrods for photocatalytic amino acid production. Science China Materials, 2022, 65, 1285-1293.	6.3	4
125	Evaluation of toxicity and adjuvant effects of peptidoglycan microspheres orally administered to mice. Journal of Microencapsulation, 2015, 32, 46-53.	2.8	3
126	High Thermally Stable Mesoporous WO ₃ /TiO ₂ Heterojunction as a High-Efficient Simulated Solar-Light Photocatalyst. Advanced Porous Materials, 2013, 1, 262-270.	0.3	3

#	Article	IF	CITATIONS
127	Phenolic resin as a carbon source for the synthesis of monometallic Mo and bimetallic CoMo carbides via carbothermal reduction route. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 267-272.	1.6	2
128	A novel route to the synthesis of H-ZSM-5-supported MoP and Ni ₂ P phosphides. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 780-786.	1.6	2
129	Novel cobalt nitride-induced oxygen activation on Pt-based catalyst for catalytic oxidation. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 848-852.	1.6	2
130	Phenol-formaldehyde resin route to the synthesis of several iron group transition metal phosphides. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 836-842.	1.6	2
131	Innenrücktitelbild: Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation (Angew. Chem. 9/2021). Angewandte Chemie, 2021, 133, 5003-5003.	2.0	1
132	The Synthesis and the Catalytic Properties of Graphene-Based Composite Materials. , 2017, , 3-26.		0
133	Photoluminescence and Enhanced Photocatalytic Activity of La ₂ Ti ₂ O ₇ :Eu ^{3Nanocrystals. Science of Advanced Materials, 2015, 7, 2361-2367.}	;t;&d t;S UP8	>¢+