Liang-Fang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8069282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Study of Glucose-to-Fructose Isomerization in Water Catalyzed by [Al(OH) ₂ (aq)] ⁺ . ACS Catalysis, 2015, 5, 5097-5103.	5.5	161
2	Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl–H ₂ O/THF Biphasic System. ACS Catalysis, 2017, 7, 256-266.	5.5	133
3	Performance of Dimethyl Sulfoxide and BrÃ,nsted Acid Catalysts in Fructose Conversion to 5-Hydroxymethylfurfural. ACS Catalysis, 2017, 7, 2199-2212.	5.5	100
4	Controlling the Reaction Networks for Efficient Conversion of Glucose into 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 4812-4832.	3.6	73
5	Sulfonated polyaniline as a solid organocatalyst for dehydration of fructose into 5-hydroxymethylfurfural. Green Chemistry, 2017, 19, 1932-1939.	4.6	64
6	Suppression of oligomer formation in glucose dehydration by CO ₂ and tetrahydrofuran. Green Chemistry, 2017, 19, 3334-3343.	4.6	55
7	Nature of vanadium species on vanadium silicalite-1 zeolite and their stability in hydroxylation reaction of benzene to phenol. Catalysis Science and Technology, 2011, 1, 1060.	2.1	50
8	Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 501-512.	3.6	46
9	Catalytic pyrolysis of natural algae from water blooms over nickel phosphide for high quality bio-oil production. RSC Advances, 2013, 3, 10806.	1.7	41
10	Adjusting the acidity of sulfonated organocatalyst for the one-pot production of 5-ethoxymethylfurfural from fructose. Catalysis Science and Technology, 2019, 9, 483-492.	2.1	28
11	Cooperative Catalytic Performance of Lewis and BrÃ,nsted Acids from AlCl ₃ Salt in Aqueous Solution toward Glucose-to-Fructose Isomerization. Journal of Physical Chemistry C, 2019, 123, 4879-4891.	1.5	28
12	Formylâ€Modified Polyaniline for the Catalytic Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2016, 9, 2174-2181.	3.6	26
13	Catalytic Dehydration of Fructose into 5â€Hydroxymethylfurfural by a DMSOâ€like Polymeric Solid Organocatalyst. ChemCatChem, 2017, 9, 3218-3225.	1.8	25
14	High-Efficiency Synthesis of 5-Hydroxymethylfurfural from Fructose over Highly Sulfonated Organocatalyst. Industrial & Engineering Chemistry Research, 2020, 59, 17218-17227.	1.8	21
15	Direct Amination of Benzene to Aniline by Aqueous Ammonia and Hydrogen Peroxide over Vâ°'Ni/Al2O3Catalyst with Catalytic Distillation. Industrial & Engineering Chemistry Research, 2007, 46, 3443-3445.	1.8	16
16	Oneâ€Pot Deoxygenation of Fructose to Furfuryl Alcohol by Sequential Dehydration and Decarbonylation. ChemCatChem, 2016, 8, 1379-1385.	1.8	16
17	One-Pot Synthesis of 2,5-Diformylfuran from Fructose by Bifunctional Polyaniline-Supported Heteropolyacid Hybrid Catalysts. Catalysts, 2019, 9, 445.	1.6	14
18	Insights into the NaCl-Induced Formation of Soluble Humins during Fructose Dehydration to 5-Hydroxymethylfurfural. Industrial & Engineering Chemistry Research, 2022, 61, 5786-5796.	1.8	9

#	Article	IF	CITATIONS
19	Elucidating active species and mechanism of the direct oxidation of benzene to phenol with hydrogen peroxide catalyzed by vanadium-based catalysts using DFT calculations. RSC Advances, 2012, 2, 2329.	1.7	8
20	Molecular mechanism comparison of decarbonylation with deoxygenation and hydrogenation of 5-hydroxymethylfurfural catalyzed by palladium acetate. Physical Chemistry Chemical Physics, 2019, 21, 3795-3804.	1.3	8
21	Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 438-438.	3.6	4