
Erzsébet Fekete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8069263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
2	The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics, 2011, 12, 269.	2.8	180
3	The VELVET A Orthologue VEL1 of Trichoderma reesei Regulates Fungal Development and Is Essential for Cellulase Gene Expression. PLoS ONE, 2014, 9, e112799.	2.5	109
4	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	2.1	99
5	Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp Fungal Genetics and Biology, 2009, 46, S19-S44.	2.1	93
6	A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Applied Microbiology and Biotechnology, 2015, 99, 7937-7944.	3.6	68
7	d-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology (United Kingdom), 2006, 152, 1507-1514.	1.8	61
8	The alternative d-galactose degrading pathway of Aspergillus nidulans proceeds via l-sorbose. Archives of Microbiology, 2004, 181, 35-44.	2.2	54
9	Sexual Recombination in the <i>Botrytis cinerea</i> Populations in Hungarian Vineyards. Phytopathology, 2008, 98, 1312-1319.	2.2	36
10	Identification of a permease gene involved in lactose utilisation in Aspergillus nidulans. Fungal Genetics and Biology, 2012, 49, 415-425.	2.1	36
11	CreA-mediated carbon catabolite repression of \$beta;-galactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiology Letters, 2004, 235, 147-151.	1.8	32
12	Regulation of formation of the intracellular β-gaiactosidase activity ofAspergillus nidulans. Archives of Microbiology, 2002, 179, 7-14.	2.2	31
13	Comparison of Botrytis cinerea populations isolated from two open-field cultivated host plants. Microbiological Research, 2013, 168, 379-388.	5.3	27
14	Characterization of a second physiologically relevant lactose permease gene (lacpB) in Aspergillus nidulans. Microbiology (United Kingdom), 2016, 162, 837-847.	1.8	23
15	CreA-mediated carbon catabolite repression of β-galactosidase formation inAspergillus nidulansis growth rate dependent. FEMS Microbiology Letters, 2004, 235, 147-151.	1.8	21
16	High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus. Applied Microbiology and Biotechnology, 2018, 102, 8799-8808.	3.6	18
17	The Role of Metal Ions in Fungal Organic Acid Accumulation. Microorganisms, 2021, 9, 1267.	3.6	17
18	d-Galactose uptake is nonfunctional in the conidiospores of Aspergillus niger. FEMS Microbiology Letters, 2012, 329, 198-203.	1.8	16

Erzsébet Fekete

#	Article	IF	CITATIONS
19	Spliceosome twin introns in fungal nuclear transcripts. Fungal Genetics and Biology, 2013, 57, 48-57.	2.1	16
20	Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans. Toxins, 2016, 8, 354.	3.4	15
21	A mechanism for a single nucleotide intron shift. Nucleic Acids Research, 2017, 45, 9085-9092.	14.5	12
22	Analysis of the Relationship between Alternative Respiration and Sterigmatocystin Formation in Aspergillus nidulans. Toxins, 2018, 10, 168.	3.4	12
23	Manganese Deficiency Is Required for High Itaconic Acid Production From D-Xylose in Aspergillus terreus. Frontiers in Microbiology, 2019, 10, 1589.	3.5	11
24	The effects of external Mn2+ concentration on hyphal morphology and citric acid production are mediated primarily by the NRAMP-family transporter DmtA in Aspergillus niger. Microbial Cell Factories, 2020, 19, 17.	4.0	11
25	Extra- and intracellular lactose catabolism in Penicillium chrysogenum: phylogenetic and expression analysis of the putative permease and hydrolase genes. Journal of Antibiotics, 2014, 67, 489-497.	2.0	9
26	The Biocontrol Potential of Endophytic Trichoderma Fungi Isolated from Hungarian Grapevines. Part I. Isolation, Identification and In Vitro Studies. Pathogens, 2021, 10, 1612.	2.8	9
27	Identification of a mutarotase gene involved in D-galactose utilization in Aspergillus nidulans. FEMS Microbiology Letters, 2017, 364, .	1.8	8
28	Metabolism of <scp>d</scp> -galactose is dispensable for the induction of the <i>beta</i> -galactosidase (<i>bgaD</i>) and lactose permease (<i>lacpA</i>) genes in <i>Aspergillus nidulans</i> . FEMS Microbiology Letters, 2014, 359, 19-25.	1.8	7
29	Carbon-Source Dependent Interplay of Copper and Manganese Ions Modulates the Morphology and Itaconic Acid Production in Aspergillus terreus. Frontiers in Microbiology, 2021, 12, 680420.	3.5	7
30	Alternatively spliced, spliceosomal twin introns in Helminthosporium solani. Fungal Genetics and Biology, 2015, 85, 7-13.	2.1	6
31	Emergence and loss of spliceosomal twin introns. Fungal Biology and Biotechnology, 2017, 4, 7.	5.1	6
32	l-Arabinose induces d-galactose catabolism via the Leloir pathway in Aspergillus nidulans. Fungal Genetics and Biology, 2019, 123, 53-59.	2.1	6
33	High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea. Folia Microbiologica, 2016, 61, 191-198.	2.3	5
34	A spliceosomal twin intron (stwintron) participates in both exon skipping and evolutionary exon loss. Scientific Reports, 2019, 9, 9940.	3.3	4
35	GalR, GalX and AraR coâ€regulate <scp>d</scp> â€galactose and <scp>l</scp> â€arabinose utilization in <i>Aspergillus nidulans</i> . Microbial Biotechnology, 2022, 15, 1839-1851.	4.2	4
36	Complex intron generation in the yeast genus Lipomyces. Scientific Reports, 2020, 10, 6022.	3.3	3

#	Article	IF	CITATIONS
37	Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species. Journal of Fungi (Basel, Switzerland), 2021, 7, 710.	3.5	3
38	D-galactose catabolism inPenicillium chrysogenum: Expression analysis of the structural genes of the Leloir pathway. Acta Biologica Hungarica, 2016, 67, 318-332.	0.7	2
39	Unique and Repeated Stwintrons (Spliceosomal Twin Introns) in the Hypoxylaceae. Journal of Fungi (Basel, Switzerland), 2022, 8, 397.	3.5	0