
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8069148/publications.pdf Version: 2024-02-01

MIROSLAV FOITA

#	Article	IF	CITATIONS
1	Peer Reviewed: Detecting DNA Hybridization and Damage. Analytical Chemistry, 2001, 73, 74 A-83 A.	6.5	319
2	Electrochemical biosensors for DNA hybridization and DNA damage. Biosensors and Bioelectronics, 1998, 13, 621-628.	10.1	273
3	DNA and RNA Quadruplex-Binding Proteins. International Journal of Molecular Sciences, 2014, 15, 17493-17517.	4.1	222
4	Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta, 2007, 74, 276-290.	5.5	218
5	Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC Technical) Tj ETQq1 1	0.784314 1.9	rgBT/Ove
6	Electrochemical Sensors for DNA Interactions and Damage. Electroanalysis, 2002, 14, 1449-1463.	2.9	182
7	Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Analytica Chimica Acta, 2019, 1077, 30-66.	5.4	158
8	Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids. Organic and Biomolecular Chemistry, 2008, 6, 2233.	2.8	135
9	G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics, 2019, 35, 3493-3495.	4.1	134
10	Nucleobase modification as redox DNA labelling for electrochemical detection. Chemical Society Reviews, 2011, 40, 5802.	38.1	132
11	Aminophenyl―and Nitrophenyl‣abeled Nucleoside Triphosphates: Synthesis, Enzymatic Incorporation, and Electrochemical Detection. Angewandte Chemie - International Edition, 2008, 47, 2059-2062.	13.8	131
12	Supercoiled DNA-modified mercury electrode: A highly sensitive tool for the detection of DNA damage. Analytica Chimica Acta, 1997, 342, 1-12.	5.4	123
13	Ferrocenylethynyl Derivatives of Nucleoside Triphosphates: Synthesis, Incorporation, Electrochemistry, and Bioanalytical Applications. Chemistry - A European Journal, 2007, 13, 9527-9533.	3.3	117
14	Recent progress in electrochemical sensors and assays for DNA damage and repair. TrAC - Trends in Analytical Chemistry, 2016, 79, 160-167.	11.4	113
15	Constant Current Chronopotentiometric Stripping Analysis of Bioactive Peptides at Mercury and Carbon Electrodes. Electroanalysis, 1998, 10, 403-409.	2.9	101
16	Differential Pulsed Voltammetric Determination of RNA at the Picomole Level in the Presence of DNA and Nucleic Acid Components. Analytical Chemistry, 1994, 66, 1566-1571.	6.5	97
17	Baseâ€Modified DNA Labeled by [Ru(bpy) ₃] ²⁺ and [Os(bpy) ₃] ²⁺ Complexes: Construction by Polymerase Incorporation of Modified Nucleoside Triphosphates, Electrochemical and Luminescent Properties, and Applications. Chemistry - A European Journal, 2009, 15, 1144-1154.	3.3	96
18	Voltammetry of native double-stranded, denatured and degraded DNAs. Journal of Electroanalytical Chemistry, 1997, 427, 49-56.	3.8	90

#	Article	IF	CITATIONS
19	Electrochemical Detection of DNA Triplet Repeat Expansion. Journal of the American Chemical Society, 2004, 126, 6532-6533.	13.7	90
20	Two-Surface Strategy in Electrochemical DNA Hybridization Assays: Detection of Osmium-Labeled Target DNA at Carbon Electrodes. Electroanalysis, 2003, 15, 431-440.	2.9	85
21	Vinylsulfonamide and Acrylamide Modification of DNA for Crossâ€linking with Proteins. Angewandte Chemie - International Edition, 2013, 52, 10515-10518.	13.8	83
22	Voltammetric microanalysis of DNA adducts with osmium tetroxide,2,2′-bipyridine using a pyrolytic graphite electrode. Talanta, 2002, 56, 867-874.	5.5	79
23	"Multicolor―Electrochemical Labeling of DNA Hybridization Probes with Osmium Tetroxide Complexes. Analytical Chemistry, 2007, 79, 1022-1029.	6.5	78
24	GFP-like Fluorophores as DNA Labels for Studying DNA–Protein Interactions. Journal of Organic Chemistry, 2012, 77, 8287-8293.	3.2	75
25	Labelling of nucleosides and oligonucleotides by solvatochromic 4-aminophthalimide fluorophore for studying DNA–protein interactions. Chemical Science, 2012, 3, 2797.	7.4	70
26	Trace measurements of plasmid DNAs by adsorptive stripping potentiometry at carbon paste electrodes. Bioelectrochemistry, 1996, 40, 41-47.	1.0	69
27	Electrode potential-modulated cleavage of surface-confined DNA by hydroxyl radicals detected by an electrochemical biosensor. Biosensors and Bioelectronics, 2000, 15, 107-115.	10.1	67
28	Use of Polished and Mercury Film-Modified Silver Solid Amalgam Electrodes in Electrochemical Analysis of DNA. Electroanalysis, 2005, 17, 452-459.	2.9	64
29	Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: detection of trinucleotide repeats. Biosensors and Bioelectronics, 2004, 20, 985-994.	10.1	63
30	Voltammetric Behavior of Osmium-Labeled DNA at Mercury Meniscus-Modified Solid Amalgam Electrodes. Detecting DNA Hybridization. Electroanalysis, 2006, 18, 186-194.	2.9	62
31	Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays. Organic and Biomolecular Chemistry, 2011, 9, 1366.	2.8	59
32	Anthraquinone as a Redox Label for DNA: Synthesis, Enzymatic Incorporation, and Electrochemistry of Anthraquinoneâ€Modified Nucleosides, Nucleotides, and DNA. Chemistry - A European Journal, 2011, 17, 14063-14073.	3.3	59
33	Adsorptive Transfer Stripping AC Voltammetry of DNA Complexes with Intercalators. Electroanalysis, 2000, 12, 926-934.	2.9	58
34	Inhibition of topoisomerase IIα: Novel function of wedelolactone. Cancer Letters, 2011, 303, 29-38.	7.2	58
35	Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Research, 2002, 30, 4966-4974.	14.5	57
36	Azidophenyl as a click-transformable redox label of DNA suitable for electrochemical detection of DNA–protein interactions. Chemical Science, 2015, 6, 575-587.	7.4	57

#	Article	IF	CITATIONS
37	BrdiÄka-type processes of cysteine and cysteine-containing peptides on silver amalgam electrodes. Analytica Chimica Acta, 2007, 582, 344-352.	5.4	55
38	Benzofurazane as a New Redox Label for Electrochemical Detection of DNA: Towards Multipotential Redox Coding of DNA Bases. Chemistry - A European Journal, 2013, 19, 12720-12731.	3.3	54
39	Detecting DNA Damage with a Silver Solid Amalgam Electrode. Electroanalysis, 2004, 16, 410-414.	2.9	53
40	Determination of nanogram quantities of osmium-labeled single stranded DNA by differential pulse stripping voltammetry. Bioelectrochemistry, 2002, 55, 119-121.	4.6	52
41	Mercury Electrodes in Nucleic Acid Electrochemistry: Sensitive Analytical Tools and Probes of DNA Structure. A Review. Collection of Czechoslovak Chemical Communications, 2004, 69, 715-747.	1.0	52
42	Use of DNA Repair Enzymes in Electrochemical Detection of Damage to DNA Bases in Vitro and in Cells. Analytical Chemistry, 2005, 77, 2920-2927.	6.5	50
43	Effect of Spinâ^'Orbit Coupling on Reduction Potentials of Octahedral Ruthenium(II/III) and Osmium(II/III) Complexes. Journal of the American Chemical Society, 2008, 130, 10947-10954.	13.7	50
44	Electrochemical Stripping Techniques in Analysis of Nucleic Acids and their Constituents. Current Analytical Chemistry, 2008, 4, 250-262.	1.2	50
45	Determination of traces of RNA in submicrogram amounts of single- or double-stranded DNAs by means of nucleic acid-modified electrodes. Electroanalysis, 1996, 8, 420-426.	2.9	48
46	Covalent Labeling of Nucleosides with VIII- and VI-Valent Osmium Complexes. Electroanalysis, 2007, 19, 1281-1287.	2.9	48
47	Cleavage of Supercoiled DNA by Deoxyribonuclease I in Solution and at the Electrode Surface. Electroanalysis, 1999, 11, 1005-1012.	2.9	47
48	Purines Bearing Phenanthroline or Bipyridine Ligands and Their Rull Complexes in Position 8 as Model Compounds for Electrochemical DNA Labeling – Synthesis, Crystal Structure, Electrochemistry, Quantum Chemical Calculations, Cytostatic and Antiviral Activity. European Journal of Inorganic Chemistry, 2007, 2007, 1752-1769.	2.0	45
49	Two Superhelix Density-Dependent DNA Transitions Detected by Changes in DNA Adsorption/Desorption Behavior. Biochemistry, 1998, 37, 4853-4862.	2.5	44
50	Effect of p53 Protein Redox States on Binding to Supercoiled and Linear DNA. Journal of Biological Chemistry, 1999, 274, 25749-25755.	3.4	44
51	Ex situ Voltammetry and Chronopotentiometry of Doxorubicin at a Pyrolytic Graphite Electrode: Redox and Catalytic Properties and Analytical Applications. Electroanalysis, 2009, 21, 2139-2144.	2.9	43
52	Voltammetric behavior of DNA modified with osmium tetroxide 2,2′-bipyridine at mercury electrodes. Bioelectrochemistry, 2004, 63, 239-243.	4.6	40
53	Label-free voltammetric detection of single-nucleotide mismatches recognized by the protein MutS. Analytical and Bioanalytical Chemistry, 2007, 388, 259-270.	3.7	40
54	Alkylsulfanylphenyl Derivatives of Cytosine and 7â€Đeazaadenine Nucleosides, Nucleotides and Nucleoside Triphosphates: Synthesis, Polymerase Incorporation to DNA and Electrochemical Study. Chemistry - A European Journal, 2011, 17, 5833-5841.	3.3	40

#	Article	IF	CITATIONS
55	Investigations of the supercoil-selective DNA binding of wild type p53 suggest a novel mechanism for controlling p53 function. FEBS Journal, 2004, 271, 3865-3876.	0.2	37
56	Label-Free Sequence-Specific DNA Sensing Using Copper-Enhanced Anodic Stripping of Purine Bases at Boron-Doped Diamond Electrodes. Analytical Chemistry, 2008, 80, 2391-2399.	6.5	37
57	Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of all Four DNA Bases for Electrochemical Analysis and Sequencing. Journal of the American Chemical Society, 2021, 143, 7124-7134.	13.7	37
58	Mercury Film Electrode as a Sensor for the Detection of DNA Damage. Electroanalysis, 2000, 12, 1422-1425.	2.9	36
59	Label-free detection of canonical DNA bases, uracil and 5-methylcytosine in DNA oligonucleotides using linear sweep voltammetry at a pyrolytic graphite electrode. Electrochemistry Communications, 2017, 82, 34-38.	4.7	36
60	Electrochemical monitoring of phytochelatin accumulation in Nicotiana tabacum cells exposed to sub-cytotoxic and cytotoxic levels of cadmium. Analytica Chimica Acta, 2006, 558, 171-178.	5.4	35
61	The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. International Journal of Molecular Sciences, 2019, 20, 5605.	4.1	35
62	Preferential Binding of Hot Spot Mutant p53 Proteins to Supercoiled DNA In Vitro and in Cells. PLoS ONE, 2013, 8, e59567.	2.5	34
63	Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins. Bioconjugate Chemistry, 2016, 27, 2089-2094.	3.6	34
64	A Single-Surface Electrochemical Biosensor for the Detection of DNA Triplet Repeat Expansion. Electroanalysis, 2006, 18, 141-151.	2.9	33
65	Voltammetry of Osmium End-Labeled Oligodeoxynucleotides at Carbon, Mercury, and Gold Electrodes. Electroanalysis, 2007, 19, 1334-1338.	2.9	33
66	DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochemical Journal, 2008, 412, 57-63.	3.7	33
67	Tuning of Oxidation Potential of Ferrocene for Ratiometric Redox Labeling and Coding of Nucleotides and DNA. Chemistry - A European Journal, 2020, 26, 1286-1291.	3.3	33
68	Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie, 2021, 186, 13-27.	2.6	33
69	Voltammetry of osmium-modified DNA at a mercury film electrode. Bioelectrochemistry, 2004, 63, 245-248.	4.6	32
70	Aqueous Heck Cross-Coupling Preparation of Acrylate-Modified Nucleotides and Nucleoside Triphosphates for Polymerase Synthesis of Acrylate-Labeled DNA. Journal of Organic Chemistry, 2013, 78, 9627-9637.	3.2	32
71	Preparation and Properties of Mercury Film Electrodes on Solid Amalgam Surface. Electroanalysis, 2010, 22, 1967-1973.	2.9	31
72	Polymerase synthesis of oligonucleotides containing a single chemically modified nucleobase for site-specific redox labelling. Chemical Communications, 2013, 49, 4652.	4.1	31

5

#	Article	IF	CITATIONS
73	G-Quadruplexes in the Archaea Domain. Biomolecules, 2020, 10, 1349.	4.0	31
74	End-labeling of peptide nucleic acid with osmium complex. Voltammetry at carbon and mercury electrodes. Electrochemistry Communications, 2009, 11, 359-362.	4.7	30
75	IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation. PLoS ONE, 2016, 11, e0157156.	2.5	30
76	Structures and stability of simple DNA repeats from bacteria. Biochemical Journal, 2020, 477, 325-339.	3.7	30
77	Osmium Tetroxide, 2,2′-Bipyridine: Electroactive Marker for Probing Accessibility of Tryptophan Residues in Proteins. Analytical Chemistry, 2008, 80, 4598-4605.	6.5	29
78	The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochemical and Biophysical Research Communications, 2010, 391, 1409-1414.	2.1	29
79	Osmium Tetroxide Complexes as Versatile Tools for Structure Probing and Electrochemical Analysis of Biopolymers. Current Analytical Chemistry, 2011, 7, 35-50.	1.2	29
80	Electrochemical DNA Sensors. , 2005, , 127-192.		27
81	Sensitive voltammetric detection of DNA damage at carbon electrodes using DNA repair enzymes and an electroactive osmium marker. Analytical and Bioanalytical Chemistry, 2008, 391, 1751-1758.	3.7	27
82	Voltammetric and Chronopotentiometric Measurements with Nucleic Acid-Modified Mercury Film on a Glassy Carbon Electrode. Electroanalysis, 2000, 12, 1390-1396.	2.9	26
83	Electrode potential-controlled DNA damage in the presence of copper ions and their complexes. Bioelectrochemistry, 2002, 55, 25-27.	4.6	25
84	Carbon Powder Based Films on Traditional Solid Electrodes as an Alternative to Disposable Electrodes. Electroanalysis, 2006, 18, 1126-1130.	2.9	25
85	Tetrathiafulvalene‣abelled Nucleosides and Nucleoside Triphosphates: Synthesis, Electrochemistry and the Scope of Their Polymerase Incorporation into DNA. European Journal of Organic Chemistry, 2009, 2009, 3519-3525.	2.4	25
86	Simultaneous Electrochemical Monitoring of Metabolites Related to the Xanthine Oxidase Pathway Using a Grinded Carbon Electrode. Analytical Chemistry, 2009, 81, 4302-4307.	6.5	25
87	A label-free electrochemical test for DNA-binding activities of tumor suppressor protein p53 using immunoprecipitation at magnetic beads. Analytica Chimica Acta, 2010, 668, 166-170.	5.4	25
88	Detecting DNA Damage with Electrodes. Perspectives in Bioanalysis, 2005, 1, 385-431.	0.3	24
89	Improved sensitivity and selectivity of uric acid voltammetric sensing with mechanically grinded carbon/graphite electrodes. Electrochimica Acta, 2009, 54, 1864-1873.	5.2	24
90	Determination of the Level of DNA Modification with Cisplatin by Catalytic Hydrogen Evolution at Mercury-Based Electrodes. Analytical Chemistry, 2010, 82, 2969-2976.	6.5	24

#	Article	IF	CITATIONS
91	Synthesis of Hydrazoneâ€Modified Nucleotides and Their Polymerase Incorporation onto DNA for Redox Labeling. ChemPlusChem, 2012, 77, 652-662.	2.8	24
92	Electrochemical Sensing of Chromiumâ€Induced DNA Damage: DNA Strand Breakage by Intermediates of Chromium(VI) Electrochemical Reduction. Electroanalysis, 2007, 19, 2093-2102.	2.9	23
93	Recognition of DNA modified by antitumor cisplatin by "latent―and "active―protein p53. Biochemical Pharmacology, 2003, 65, 1305-1316.	4.4	22
94	Direct Voltammetric Analysis of DNA Modified with Enzymatically Incorporated 7-Deazapurines. Analytical Chemistry, 2010, 82, 6807-6813.	6.5	22
95	Selective binding of tumor suppressor p53 protein to topologically constrained DNA: Modulation by intercalative drugs. Biochemical and Biophysical Research Communications, 2010, 393, 894-899.	2.1	22
96	Adsorptive Stripping Voltammetry of Denatured DNA on Hg/Ag Electrode. Electroanalysis, 2000, 12, 960-962.	2.9	21
97	Differential recognition by the tumor suppressor protein p53 of DNA modified by the novel antitumor trinuclear platinum drug BBR3464 and cisplatin. Nucleic Acids Research, 2004, 32, 5546-5552.	14.5	21
98	Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs. BioMed Research International, 2018, 2018, 1-10.	1.9	21
99	Enzyme-Linked Electrochemical Detection of PCR-Amplified Nucleotide Sequences Using Disposable Screen-Printed Sensors. Applications in Gene Expression Monitoring. Sensors, 2008, 8, 193-210.	3.8	20
100	Detection of Single Nucleotide Polymorphisms in p53 Mutation Hotspots and Expression of Mutant p53 in Human Cell Lines Using an Enzyme‣inked Electrochemical Assay. Electroanalysis, 2009, 21, 1723-1729.	2.9	20
101	Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Crossâ€Linking. Chemistry - A European Journal, 2015, 21, 16091-16102.	3.3	20
102	SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci. Briefings in Bioinformatics, 2021, 22, 1338-1345.	6.5	20
103	Recognition of cisplatin-damaged DNA by p53 protein: Critical role of the p53 C-terminal domain. Biochemical and Biophysical Research Communications, 2006, 339, 477-484.	2.1	19
104	Redox Labels and Indicators Based on Transition Metals and Organic Electroactive Moieties for Electrochemical Nucleic Acids Sensing. Current Organic Chemistry, 2011, 15, 2936-2949.	1.6	19
105	Electrochemical detection of 5-methylcytosine in bisulfite-treated DNA. Electrochimica Acta, 2012, 78, 75-81.	5.2	19
106	Terminology of bioanalytical methods (IUPAC Recommendations 2018). Pure and Applied Chemistry, 2018, 90, 1121-1198.	1.9	19
107	Searching for target sequences by p53 protein is influenced by DNA length. Biochemical and Biophysical Research Communications, 2006, 341, 470-477.	2.1	18
108	Two-dimensional condensation of pyrimidine oligonucleotides during their self-assemblies at mercury based surfaces. Electrochimica Acta, 2008, 53, 2818-2824.	5.2	17

#	Article	IF	CITATIONS
109	Label-Free Electrochemical Monitoring of DNA Ligase Activity. Analytical Chemistry, 2008, 80, 7609-7613.	6.5	17
110	Detection of Abasic Sites in DNA by Electrochemical, Immunoelectrochemical and Acoustic Methods Using OsO ₄ , 2,2′â€bipyridine as a Probe for Unpaired Thymine Residues. Electroanalysis, 2009, 21, 295-302.	2.9	17
111	Improved Electrochemical Detection of Purine Nucleobases at Mechanically Roughened Edgeâ€Plane Pyrolytic Graphite Electrode. Electroanalysis, 2009, 21, 666-670.	2.9	16
112	Redox state of p63 and p73 core domains regulates sequence-specific DNA binding. Biochemical and Biophysical Research Communications, 2013, 433, 445-449.	2.1	16
113	Voltammetric Study of dsDNA Modified by Multi-redox Label Based on N-methyl-4-hydrazino-7-nitrobenzofurazan. Electrochimica Acta, 2014, 129, 348-357.	5.2	16
114	Electrochemical behaviour of 2,4-dinitrophenylhydrazi(o)ne as multi-redox centre DNA label at mercury meniscus modified silver solid amalgam electrode. Electrochimica Acta, 2014, 126, 122-131.	5.2	16
115	Thiolate monolayers formed on different amalgam electrodes. Part II: Properties and application. Journal of Electroanalytical Chemistry, 2013, 694, 84-93.	3.8	15
116	Electrochemical detection of DNA binding by tumor suppressor p53 protein using osmium-labeled oligonucleotide probes and catalytic hydrogen evolution at the mercury electrode. Analytical and Bioanalytical Chemistry, 2014, 406, 5843-5852.	3.7	15
117	G-quadruplex-based structural transitions in 15-mer DNA oligonucleotides varying in lengths of internal oligo(dG) stretches detected by voltammetric techniques. Analytical and Bioanalytical Chemistry, 2015, 407, 5817-5826.	3.7	15
118	Electrochemical Reduction and Oxidation of Six Natural 2′â€Deoxynucleosides at a Pyrolytic Graphite Electrode in the Presence or Absence of Ambient Oxygen. Electroanalysis, 2019, 31, 2057-2066.	2.9	15
119	The reduction of doxorubicin at a mercury electrode and monitoring its interaction with DNA using constant current chronopotentiometry. Collection of Czechoslovak Chemical Communications, 2009, 74, 1727-1738.	1.0	14
120	Sensing mispaired thymines in DNA heteroduplexes using an electroactive osmium marker: towards electrochemical SNP probing. Analytical and Bioanalytical Chemistry, 2011, 400, 197-204.	3.7	14
121	Enzyme-linked electrochemical DNA ligation assay using magnetic beads. Analytical and Bioanalytical Chemistry, 2014, 406, 4129-4136.	3.7	14
122	Electrodeposition of silver amalgam particles on ITO – Towards novel electrode material. Journal of Electroanalytical Chemistry, 2018, 821, 53-59.	3.8	14
123	Label-free electrochemical analysis of purine nucleotides and nucleobases at disposable carbon electrodes in microliter volumes. Journal of Electroanalytical Chemistry, 2019, 847, 113252.	3.8	14
124	Hydrogen Evolution Facilitates Reduction of DNA Guanine Residues at the Hanging Mercury Drop Electrode: Evidence for a Chemical Mechanism. Electroanalysis, 2016, 28, 2785-2790.	2.9	13
125	Phenothiazine-linked nucleosides and nucleotides for redox labelling of DNA. Organic and Biomolecular Chemistry, 2017, 15, 6984-6996.	2.8	13
126	Simultaneous voltammetric determination of free tryptophan, uric acid, xanthine and hypoxanthine in plasma and urine. Electrochimica Acta, 2020, 329, 135132.	5.2	13

#	Article	IF	CITATIONS
127	Electrochemistry of closo-dodecaborate dianion and its simple exo-skeletal derivatives at carbon electrodes in aqueous phosphate buffers. Journal of Electroanalytical Chemistry, 2013, 707, 38-42.	3.8	12
128	Biophysical and electrochemical studies of protein–nucleic acid interactions. Monatshefte Für Chemie, 2015, 146, 723-739.	1.8	12
129	Voltammetric and adsorption study of 4-nitrophenyl-triazole-labeled 2′-deoxycytidine and 7-deazaadenosine nucleosides at boron-doped diamond electrode. Journal of Electroanalytical Chemistry, 2018, 821, 111-120.	3.8	12
130	Silver Amalgam Nanoparticles and Microparticles: A Novel Plasmonic Platform for Spectroelectrochemistry. Journal of Physical Chemistry C, 2019, 123, 16957-16964.	3.1	12
131	Oxidation of Sanguinarine and Its Dihydroâ€Derivative at a Pyrolytic Graphite Electrode Using Ex Situ Voltammetry. Study of the Interactions of the Alkaloids with DNA. Electroanalysis, 2011, 23, 1671-1680.	2.9	11
132	Tracing dsDNA Virus–Host Coevolution through Correlation of Their G-Quadruplex-Forming Sequences. International Journal of Molecular Sciences, 2021, 22, 3433.	4.1	11
133	DNA Hybridization on Membraneâ€Modified Carbon Electrodes. Analytical Letters, 2005, 38, 2493-2507.	1.8	10
134	p73, like its p53 homolog, shows preference for inverted repeats forming cruciforms. PLoS ONE, 2018, 13, e0195835.	2.5	10
135	Electrodeposited silver amalgam particles on pyrolytic graphite in (spectro)electrochemical detection of 4-nitrophenol, DNA and green fluorescent protein. Bioelectrochemistry, 2020, 132, 107436.	4.6	10
136	G-quadruplexes in helminth parasites. Nucleic Acids Research, 2022, 50, 2719-2735.	14.5	10
137	DNA modification with cisplatin affects sequence-specific DNA binding of p53 and p73 proteins in a target site-dependent manner. FEBS Journal, 2006, 273, 4693-4706.	4.7	9
138	Methoxyphenol and Dihydrobenzofuran as Oxidizable Labels for Electrochemical Detection of DNA. ChemPlusChem, 2014, 79, 1703-1712.	2.8	9
139	Detection of p53 Gene by Using Genomagnetic Assay Combined with Carbon Nanotube Modified Disposable Sensor Technology. Electroanalysis, 2015, 27, 1579-1586.	2.9	9
140	Voltammetric analysis of 5-(4-Azidophenyl)-2′-deoxycytidine nucleoside and azidophenyl-labelled single- and double-stranded DNAs. Electrochimica Acta, 2016, 215, 72-83.	5.2	9
141	Magnetic bead-based electrochemical assay for determination of DNA methyltransferase activity. Electrochimica Acta, 2017, 231, 575-581.	5.2	9
142	The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms. International Journal of Molecular Sciences, 2020, 21, 127.	4.1	9
143	Electrochemistry of parent and exo-skeletally substituted icosahedral monocarba and dicarbaboranes and their derivatives at the graphite carbon electrode in aqueous phosphate buffers. Journal of Electroanalytical Chemistry, 2014, 730, 16-19.	3.8	8
144	Electrochemical behavior of anthraquinone- and nitrophenyl-labeled deoxynucleoside triphosphates: a contribution to development of multipotential redox labeling of DNA. Monatshefte Für Chemie, 2015, 146, 839-847.	1.8	8

#	Article	IF	CITATIONS
145	Flavonolignan Conjugates as DNAâ€binding Ligands and Topoisomerase I Inhibitors: Electrochemical and Electrophoretic Approaches. Electroanalysis, 2016, 28, 2866-2874.	2.9	8
146	Enzyme-linked electrochemical detection of DNA fragments amplified by PCR in the presence of a biotinylated deoxynucleoside triphosphate using disposable pencil graphite electrodes. Monatshefte Für Chemie, 2015, 146, 849-855.	1.8	7
147	Evidence for allosteric effects on p53 oligomerization induced by phosphorylation. Protein Science, 2018, 27, 523-530.	7.6	7
148	Influence of the lengths of thymine, cytosine, and adenine stretches on the two-dimensional condensation of oligodeoxynucleotides at mercury and silver amalgam electrode surfaces. Journal of Electroanalytical Chemistry, 2019, 849, 113364.	3.8	7
149	Voltammetric behavior of a candidate anticancer drug roscovitine at carbon electrodes in aqueous buffers and a cell culture medium. Monatshefte Für Chemie, 2019, 150, 461-467.	1.8	7
150	Electrochemistry of icosahedral cobalt bis(dicarbollide) ions and their carbon and boron substituted derivatives in aqueous phosphate buffers. Electrochimica Acta, 2020, 342, 136112.	5.2	7
151	p53 Binds Preferentially to Non-B DNA Structures Formed by the Pyrimidine-Rich Strands of GAA·TTC Trinucleotide Repeats Associated with Friedreich's Ataxia. Molecules, 2019, 24, 2078.	3.8	6
152	Vicinal Diolâ€Tethered Nucleobases as Targets for DNA Redox Labeling with Osmate Complexes. ChemBioChem, 2020, 21, 171-180.	2.6	6
153	Oxidation of Protopine at a Pyrolytic Graphite Electrode Using Cyclic and Squareâ€Wave Voltammetry. Electroanalysis, 2010, 22, 2879-2883.	2.9	5
154	Electrochemical Activity of Wedelolactone and Probing its Interaction with DNA Using Voltammetry at a Carbon Electrode. Electroanalysis, 2015, 27, 2268-2271.	2.9	5
155	Electrochemistry of different boranes, carbaboranes and their exo -skeletal hydroxy derivatives at the graphite carbon electrode in aqueous phosphate buffers. Electrochimica Acta, 2016, 205, 8-14.	5.2	5
156	Interactions of fluorescent dye SYBR Green I with natural and 7-deazaguanine-modified DNA studied by fluorescence and electrochemical methods. Monatshefte Für Chemie, 2016, 147, 13-20.	1.8	5
157	Electrochemical Detection of SNP in Human Mitochondrial DNA Using Cyclic Primer Extension with Biotinylated Nucletides and Enzymatic Labeling at Disposable Pencil Graphite Electrodes. Electroanalysis, 2018, 30, 2321-2329.	2.9	5
158	Amplified detection of single base mismatches with the competing-strand assay reveals complex kinetic and thermodynamic behavior of strand displacement at the electrode surface. Electrochimica Acta, 2018, 285, 272-283.	5.2	5
159	Carbon Electrodes in Electrochemical Analysis of Biomolecules and Bioactive Substances. , 2018, , 51-111.		5
160	Dual redox labeling of DNA as a tool for electrochemical detection of p53 protein-DNA interactions. Analytica Chimica Acta, 2019, 1050, 123-131.	5.4	5
161	Differential Salt-Induced Dissociation of the p53 Protein Complexes with Circular and Linear Plasmid DNA Substrates Suggest Involvement of a Sliding Mechanism. International Journal of Molecular Sciences, 2015, 16, 3163-3177.	4.1	4
162	Electrochemical behavior of 7-deazaguanine- and 7-deazaadenine-modified DNA at the hanging mercury drop electrode. Monatshefte Für Chemie, 2016, 147, 3-11.	1.8	4

#	Article	IF	CITATIONS
163	Determination of 2-nitrophenol using carbon film electrode. Monatshefte Für Chemie, 2016, 147, 173-179.	1.8	4
164	Catalytic and redox activity of nucleic acids at mercury electrodes: Roles of nucleobase residues. Journal of Electroanalytical Chemistry, 2020, 858, 113812.	3.8	4
165	Electrochemical reduction and oxidation of eight unnatural 2′-deoxynucleosides at a pyrolytic graphite electrode. Electrochimica Acta, 2020, 362, 137210.	5.2	4
166	Distinction Between Native and Denatured DNA by Means of Compression. Electroanalysis, 2000, 12, 1233-1236.	2.9	3
167	Protein p53 Binding to Cisplatinâ€modified DNA Targets Evaluated by Modificationâ€specific Electrochemical Immunoprecipitation Assay. Electroanalysis, 2017, 29, 319-323.	2.9	3
168	Effects of halide anions on adsorption and 2D condensation of 5-fluorocytosine at hanging mercury drop electrode. Journal of Electroanalytical Chemistry, 2018, 821, 121-125.	3.8	3
169	Butylacrylateâ€nucleobase Conjugates as Targets for Twoâ€step Redox Labeling of DNA with an Osmium Tetroxide Complex. Electroanalysis, 2018, 30, 371-377.	2.9	3
170	Electrochemical reduction of azidophenyl-deoxynucleoside conjugates at mercury surface. Electrochimica Acta, 2018, 259, 377-385.	5.2	3
171	Fast enzyme-linked electrochemical sensing of DNA hybridization at pencil graphite electrodes. Application to detect gene deletion in a human cell culture. Journal of Electroanalytical Chemistry, 2020, 862, 113951.	3.8	3
172	Adsorption and 2D condensation of 5-nitrocytosine at the hanging mercury drop electrode. Journal of Electroanalytical Chemistry, 2019, 847, 113238.	3.8	2
173	Electroanalysis of unnatural base pair content in plasmid DNA generated in a semi-synthetic organism. Electrochimica Acta, 2020, 364, 137298.	5.2	2
174	Simple Electrochemical Characterization of ortho â€Carborane and some of its exo â€Skeletal Derivatives. Electroanalysis, 2020, 32, 1859-1866.	2.9	2
175	Voltammetric studies of selected porphyrin G-quadruplex ligands and their interaction with DNA in solution and at the mercury electrode surface. Electrochimica Acta, 2021, 394, 139151.	5.2	2
176	Redox Labeling of Nucleic Acids for Electrochemical Analysis of Nucleotide Sequences and DNA Damage. Advanced Sciences and Technologies for Security Applications, 2016, , 309-331.	0.5	2
177	Electrochemistry of icosahedral metal full and half sandwich metallacarboranes in phosphate buffers. Journal of Electroanalytical Chemistry, 2022, 910, 116165.	3.8	2
178	Applying Mesoporous Silica SBAâ€15 in Electrochemical Detection of DNA Hybridization. Electroanalysis, 2016, 28, 1860-1864.	2.9	1
179	Special Issue on Modern Electrochemical Methods XXXIV and 47th Heyrovský Discussion. Analytical Letters, 2016, 49, 1-3.	1.8	1
180	Labelâ€free Voltammetric Detection of Products of Terminal Deoxynucleotidyl Transferase Tailing Reaction. Electroanalysis, 2019, 31, 246-255.	2.9	1

#	Article	IF	CITATIONS
181	Plasmonic Properties of Silver Amalgam Nanoparticles Studied by Analytical Transmission Electron Microscopy. Microscopy and Microanalysis, 2020, 26, 2650-2652.	0.4	1
182	Constant-current chronopotentiometric stripping detection of bovine serum albumin on silver amalgam particles. Journal of Electroanalytical Chemistry, 2020, 859, 113854.	3.8	1
183	Electrodeposition of silver amalgam particles on screen-printed silver electrodes in voltammetric detection of 4-nitrophenol, bovine serum albumin and artificial nucleosides dTPT3 and d5SICS. Sensors and Actuators B: Chemical, 2021, 340, 129921.	7.8	1
184	Electrochemistry of Cobalta Bis(dicarbollide) Ions Substituted at Carbon Atoms with Hydrophilic Alkylhydroxy and Carboxy Groups. Molecules, 2022, 27, 1761.	3.8	1
185	Electrochemistry of organic, bioactive compounds and biopolymers. Monatshefte Für Chemie, 2015, 146, 721-721.	1.8	0
186	Electrochemistry of organic and bioactive compounds. Monatshefte Für Chemie, 2019, 150, 371-371.	1.8	0
187	Special Issue of Electroanalysis Dedicated to the Memory of Professor Emil PaleÄek. Electroanalysis, 2019, 31, 1815-1815.	2.9	Ο
188	A simple electroanalysis of polyG RNA in mixtures with 3′,5′-cyclic guanosine monophosphate achieved by selective desorption of the monomers from the electrode surface. Journal of Electroanalytical Chemistry, 2021, 901, 115773.	3.8	0
189	Aminophenyl- and nitrophenyl-labeled DNA. Synthesis by polymerase incorporation of nucleoside triphosphates and electrochemical properties 2008		Ο