Ali Zadhoush

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8069007/publications.pdf

Version: 2024-02-01

64 papers

1,927 citations

361296 20 h-index 42 g-index

64 all docs 64
docs citations

times ranked

64

2256 citing authors

#	Article	IF	CITATIONS
1	The Effect of Fibers' Length Distribution and Concentration on Rheological and Mechanical Properties of Glass Fiber–Reinforced Polypropylene Composite. Journal of Industrial Textiles, 2022, 51, 8452S-8471S.	1.1	8
2	Selfâ€healing performance of hybrid coreâ€shell nanofibers mat containing epoxyâ€mercaptan at subroom temperature. Polymer Composites, 2021, 42, 2422-2431.	2.3	12
3	The influence of CNT-doped carbon aerogels on microstructural, rheological and mechanical properties of epoxy nanocomposites. Composites Science and Technology, 2021, 215, 109031.	3.8	10
4	Fractural performance of epoxy nanocomposites reinforced with carbon aerogels in different structures. Theoretical and Applied Fracture Mechanics, 2021, 115, 103079.	2.1	4
5	Synthesis and characterization of powdered CNT-doped carbon aerogels. Journal of Non-Crystalline Solids, 2021, 571, 121058.	1.5	15
6	Significance of thermodynamics and rheological characteristics of dope solutions on the morphological evolution of polyethersulfone ultrafiltration membranes. Polymer Engineering and Science, 2021, 61, 742-753.	1.5	15
7	Single nozzle electrospinning of encapsulated epoxy and mercaptan in PAN for self-healing application. Polymer, 2020, 186, 122007.	1.8	19
8	Mechanical properties of transparent poly(methyl methacrylate) nanocomposites reinforced with core–shell polyacrylonitrile/poly(methyl methacrylate) nanofibers. Journal of Applied Polymer Science, 2020, 137, 49192.	1.3	8
9	Water-glass based silica aerogel: unique nanostructured filler for epoxy nanocomposites. Journal of Porous Materials, 2019, 26, 1755-1765.	1.3	17
10	Interpenetrating organic–inorganic network: A short review on aerogel as a nanoporous filler in epoxy nanocomposite. Material Design and Processing Communications, 2019, 1, e107.	0.5	4
11	Tuning morphology and transport in ultrafiltration membranes derived from polyethersulfone through exploration of dope formulation and characteristics. Materials Research Express, 2019, 6, 125326.	0.8	19
12	Evaluation of surface modification impact on PP/MWCNT nanocomposites by rheological and mechanical characterization, assisted with morphological image processing. Polymer Composites, 2019, 40, E501.	2.3	16
13	Melt-spun PLA liquid-filled fibers: physical, morphological, and thermal properties. Journal of the Textile Institute, 2019, 110, 89-99.	1.0	15
14	Influence of microfluidic flow rates on the propagation of nano/microcracks in liquid core and hollow fibers. Theoretical and Applied Fracture Mechanics, 2018, 96, 83-89.	2.1	14
15	Recent advances in core/shell bicomponent fibers and nanofibers: A review. Journal of Applied Polymer Science, 2018, 135, 46265.	1.3	131
16	Super high-rate fabrication of high-purity carbon nanotube aerogels from floating catalyst method for oil spill cleaning. Chemical Physics Letters, 2018, 693, 146-151.	1.2	50
17	A review on new mesostructured composite materials: Part I. synthesis of polymer-mesoporous silica nanocomposite. Journal of Reinforced Plastics and Composites, 2018, 37, 441-459.	1.6	23
18	A review on new mesostructured composite materials: Part II. Characterization and properties of polymer–mesoporous silica nanocomposite. Journal of Reinforced Plastics and Composites, 2018, 37, 738-769.	1.6	20

#	Article	IF	CITATIONS
19	Effect of alkali treatment on mechanical properties of the green composites reinforced with milkweed fibers. Journal of the Textile Institute, 2018, 109, 24-31.	1.0	25
20	Influence of porosity and aspect ratio of nanoparticles on the interface modification of glass/epoxy composites. Polymer Composites, 2018, 39, 3073-3080.	2.3	8
21	A review on aerogel: 3D nanoporous structured fillers in polymerâ€based nanocomposites. Polymer Composites, 2018, 39, 3383-3408.	2.3	83
22	The role of interface in improving fracture toughness of shaped steel fiber-reinforced composites. Journal of Composite Materials, 2018, 52, 981-987.	1.2	1
23	Hybrid silane-treated glass fabric/epoxy composites: tensile properties by micromechanical approach. Iranian Polymer Journal (English Edition), 2018, 27, 1-11.	1.3	8
24	Surface Modification of Basalt Fibers by Nanostructured Silica Aerogel. Fibers and Polymers, 2018, 19, 1843-1849.	1.1	11
25	Effect of alignment and packing density on the stress relaxation process of carbon nanotube fibers spun from floating catalyst chemical vapor deposition method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 570-578.	2.3	25
26	Melt-spun Liquid Core Fibers: A CFD Analysis on Biphasic Flow in Coaxial Spinneret Die. Fibers and Polymers, 2018, 19, 905-913.	1.1	14
27	Silica Aerogel–Epoxy Nanocomposites: Understanding Epoxy Reinforcement in Terms of Aerogel Surface Chemistry and Epoxy–Silica Interface Compatibility. ACS Applied Nano Materials, 2018, 1, 4179-4189.	2.4	35
28	Fabrication and evaluation of silica aerogel-epoxy nanocomposites: Fracture and toughening mechanisms. Theoretical and Applied Fracture Mechanics, 2018, 97, 156-164.	2.1	36
29	Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: The effect of solvent power. Journal of Membrane Science, 2017, 532, 47-57.	4.1	54
30	Flexural and Charpy impact behaviour of epoxy/glass fabric treated by nano-SiO ₂ and silane blend. Plastics, Rubber and Composites, 2017, 46, 314-321.	0.9	16
31	Evaluation of interfacial properties of the silane blend sized glass fiber–epoxy composite by the microdroplet test. Journal of Composite Materials, 2017, 51, 1573-1581.	1.2	4
32	Melt-spun liquid core fibers: physical and morphological characteristics. Iranian Polymer Journal (English Edition), 2016, 25, 397-403.	1.3	17
33	Effects of chemical surface pretreatment on tensile properties of a single glass fiber and the glass fiber reinforced epoxy composite. Polymer Composites, 2016, 37, 91-100.	2.3	18
34	Microfluidic behavior in melt-spun hollow and liquid core fibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 451-456.	1.8	25
35	Fabrication and characterization of silicon carbide/epoxy nanocomposite using silicon carbide nanowhisker and nanoparticle reinforcements. Journal of Composite Materials, 2016, 50, 435-446.	1.2	71
36	Thermal Degradation and Flammability Properties of Polypropylene Nanocomposite Using Organoclayâ€ <i>graft</i> â€poly(Ethylene Glycol Methacrylate Phosphate). Advances in Polymer Technology, 2014, 33, .	0.8	8

3

#	Article	IF	CITATIONS
37	Investigation into energy absorption capacity of composites reinforced by three-dimensional-weft knitted fabrics. Journal of Industrial Textiles, 2014, 43, 536-548.	1.1	9
38	Preparation and characterization of thermal-responsive non-woven poly (propylene) materials grafted with N-isopropylacrylamide/ \hat{l}^2 -cyclodextrin. Journal of Industrial Textiles, 2013, 43, 116-131.	1.1	10
39	Preparation of porous nanofibers from electrospun polyacrylonitrile/calcium carbonate composite nanofibers using porogen leaching technique. Journal of Applied Polymer Science, 2013, 128, 926-933.	1.3	24
40	Shear behavior of soft-matrix composites reinforced with polyethylene loop-formed fibers. Iranian Polymer Journal (English Edition), 2013, 22, 15-24.	1.3	6
41	Shear modeling of fiber reinforced soil composite on the base of fiber pull-out test. Fibers and Polymers, 2013, 14, 277-284.	1.1	19
42	Novel superhydrophobic top coating on surface modified PVC-coated fabric. Progress in Organic Coatings, 2013, 76, 821-826.	1.9	13
43	Mechanical properties of polypropylene/glass weft knitted composites hot pressed in various structures and contents. Science and Engineering of Composite Materials, 2013, 20, 67-73.	0.6	5
44	Air permeability of electrospun polyacrylonitrile nanoweb. Journal of Applied Polymer Science, 2012, 126, 232-243.	1.3	40
45	The influence of epoxy resin on the morphological and rheological properties of PET/PA66 blend. Rheologica Acta, 2012, 51, 467-480.	1.1	10
46	A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 2012, 30, 100-116.	3.2	583
47	Investigation of the effect of SSP in stabilizing the structure of condensation polymer blends via rheological measurements. Rheologica Acta, 2011, 50, 131-140.	1.1	3
48	Effect of shape and orientation of carbon steel fiber on the modulus of epoxyâ€based composite. Journal of Applied Polymer Science, 2011, 121, 469-474.	1.3	1
49	Influence of yarn texture on the mechanical properties of textile composite castings. Polymer Composites, 2010, 31, 203-209.	2.3	2
50	Scaffold percolative efficiency: in vitro evaluation of the structural criterion for electrospun mats. Journal of Materials Science: Materials in Medicine, 2010, 21, 2989-2998.	1.7	15
51	Experimental investigation of the governing parameters in the electrospinning of poly(3â€hydroxybutyrate) scaffolds: Structural characteristics of the pores. Journal of Applied Polymer Science, 2010, 118, 2682-2689.	1.3	24
52	Effect of dry/wet spinning on the photooxidative degradation of acrylic fibers. Journal of Applied Polymer Science, 2009, 111, 945-952.	1.3	7
53	Crosslinking of plasticized PVC used in coated fabrics. Journal of Vinyl and Additive Technology, 2009, 15, 108-112.	1.8	4
54	Effect of orientation and crystallinity on the photodegradation of poly(ethylene terephthalate) fibers. Polymer Engineering and Science, 2008, 48, 949-956.	1.5	8

ALI ZADHOUSH

#	Article	IF	CITATION
55	Hydrolytic degradation of poly(ethylene terephthalate). Journal of Applied Polymer Science, 2007, 103, 2304-2309.	1.3	68
56	Synthesis and optimization of copper sulfide-coated electrically conducting poly(acrylonitrile) fibers. Journal of Applied Polymer Science, 2007, 104, 2579-2586.	1.3	10
57	PET/PP blending by using PP-g-MA synthesized by solid phase. Journal of Applied Polymer Science, 2007, 104, 3986-3993.	1.3	41
58	Hydrolytic and thermal degradation of PET fibers and PET granule: The effects of crystallization, temperature, and humidity. Journal of Applied Polymer Science, 2007, 106, 1544-1549.	1.3	48
59	Filler–rubber interactions in α_celluloseâ€filled styrene butadiene rubber composites. Polymer Composites, 2007, 28, 748-754.	2.3	13
60	Physicomechanical properties of ?-cellulose-filled styrene-butadiene rubber composites. Journal of Applied Polymer Science, 2005, 96, 2203-2211.	1.3	66
61	Efficient and novel method for surface oxidation of polypropylene in the solid phase using microwave irradiation. Journal of Applied Polymer Science, 2001, 79, 1317-1323.	1.3	12
62	Microwave assisted oxidation of polyethylene under solid-state conditions with potassium permanganate. European Polymer Journal, 2001, 37, 1199-1206.	2.6	19
63	The Influence of "Enzymatic Hydrolysis of Cellulosic Substrates―on the Final Quality of Coated Fabrics. Journal of Industrial Textiles, 2001, 30, 211-221.	1.1	4
64	The Influence of Plasticizer Content and Type on the Rheological Behaviour of Plastisol Used in Coated Fabrics, Journal of Industrial Textiles, 2000, 30, 50-62.	1.1	4