Agnieszka PotÄga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8068835/publications.pdf

Version: 2024-02-01

		1478505	1372567	
12	103	6	10	
papers	citations	h-index	g-index	
12	12	12	110	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	The Imidazoacridinone Antitumor Drug, C-1311, Is Metabolized by Flavin Monooxygenases but Not by Cytochrome P450s. Drug Metabolism and Disposition, 2011, 39, 1423-1432.	3.3	22
2	Modulation of CYP3A4 activity and induction of apoptosis, necrosis and senescence by the antiâ€tumour imidazoacridinone Câ€1311 in human hepatoma cells. Cell Biology International, 2013, 37, 109-120.	3.0	13
3	Diminished toxicity of C-1748, 4-methyl-9-hydroxyethylamino-1-nitroacridine, compared with its demethyl analog, C-857, corresponds to its resistance to metabolism in HepG2 cells. Biochemical Pharmacology, 2012, 84, 30-42.	4.4	10
4	Electrochemical simulation of metabolism for antitumor-active imidazoacridinone C-1311 and in silico prediction of drug metabolic reactions. Journal of Pharmaceutical and Biomedical Analysis, 2019, 169, 269-278.	2.8	10
5	Phase I and phase II metabolism simulation of antitumor-active 2-hydroxyacridinone with electrochemistry coupled on-line with mass spectrometry. Xenobiotica, 2019, 49, 922-934.	1.1	9
6	Novel insights into conjugation of antitumor-active unsymmetrical bisacridine C-2028 with glutathione: Characteristics of non-enzymatic and glutathione S-transferase-mediated reactions. Journal of Pharmaceutical Analysis, 2021, 11, 791-798.	5.3	7
7	Mechanism-based inactivation of human cytochrome P450 1A2 and 3A4 isoenzymes by anti-tumor triazoloacridinone C-1305. Xenobiotica, 2016, 46, 1056-1065.	1.1	6
8	Imidazoacridinone antitumor agent C-1311 as a selective mechanism-based inactivator of human cytochrome P450 1A2 and 3A4 isoenzymes. Pharmacological Reports, 2016, 68, 663-670.	3.3	6
9	Electrochemical and in silico approaches for liver metabolic oxidation of antitumor-active triazoloacridinone C-1305. Journal of Pharmaceutical Analysis, 2020, 10, 376-384.	5.3	6
10	Metabolic Profiles of New Unsymmetrical Bisacridine Antitumor Agents in Electrochemical and Enzymatic Noncellular Systems and in Tumor Cells. Pharmaceuticals, 2021, 14, 317.	3.8	6
11	Acid–Base Equilibrium and Self-Association in Relation to High Antitumor Activity of Selected Unsymmetrical Bisacridines Established by Extensive Chemometric Analysis. Molecules, 2022, 27, 3995.	3.8	5
12	Electrochemical simulation of metabolic reduction and conjugation reactions of unsymmetrical bisacridine antitumor agents, C-2028 and C-2053. Journal of Pharmaceutical and Biomedical Analysis, 2021, 197, 113970.	2.8	3