
Domenico M Cavallo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8068538/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in DNA Methylation Patterns in Subjects Exposed to Low-Dose Benzene. Cancer Research, 2007, 67, 876-880.	0.4	575
2	Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environmental Health, 2009, 8, 41.	1.7	135
3	VOCs and aldehydes source identification in European office buildingsÂ- The OFFICAIR study. Building and Environment, 2017, 115, 18-24.	3.0	80
4	SYN-JEM: A Quantitative Job-Exposure Matrix for Five Lung Carcinogens. Annals of Occupational Hygiene, 2016, 60, 795-811.	1.9	67
5	Airborne Particulate Matter in School Classrooms of Northern Italy. International Journal of Environmental Research and Public Health, 2014, 11, 1398-1421.	1.2	66
6	Allergens in indoor air: environmental assessment and health effects. Science of the Total Environment, 2001, 270, 33-42.	3.9	65
7	Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review. International Journal of Environmental Research and Public Health, 2017, 14, 909.	1.2	64
8	Oxidative potential and chemical composition of PM2.5 in office buildings across Europe – The OFFICAIR study. Environment International, 2016, 92-93, 324-333.	4.8	56
9	Short-term particulate matter exposure influences nasal microbiota in a population of healthy subjects. Environmental Research, 2018, 162, 119-126.	3.7	56
10	Identification of particulate matter determinants in residential homes. Building and Environment, 2015, 86, 61-69.	3.0	51
11	Toxicological and Immune Findings in Workers Exposed to Pentachlorophenol (PCP). Archives of Environmental Health, 1993, 48, 81-88.	0.4	50
12	Multi-metric measurement of personal exposure to ultrafine particles in selected urban microenvironments. Atmospheric Environment, 2015, 110, 8-17.	1.9	50
13	Modelling of occupational respirable crystalline silica exposure for quantitative exposure assessment in community-based case-control studies. Journal of Environmental Monitoring, 2011, 13, 3262.	2.1	48
14	Vertical variation of PM2.5 mass and chemical composition, particle size distribution, NO2, and BTEX at a high rise building. Environmental Pollution, 2018, 235, 339-349.	3.7	47
15	Emission of air pollutants from burning candles with different composition in indoor environments. Environmental Science and Pollution Research, 2014, 21, 4320-4330.	2.7	46
16	Emissions of air pollutants from scented candles burning in a test chamber. Atmospheric Environment, 2012, 55, 257-262.	1.9	43
17	Immunomodulatory Effects of Occupational Exposure to Mancozeb. Archives of Environmental Health, 1996, 51, 445-451.	0.4	40
18	Development of an Exposure Measurement Database on Five Lung Carcinogens (ExpoSYN) for Quantitative Retrospective Occupational Exposure Assessment. Annals of Occupational Hygiene, 2012, 56, 70-9.	1.9	40

DOMENICO M CAVALLO

#	Article	IF	CITATIONS
19	COVID-19 Outbreak in Italy: Protecting Worker Health and the Response of the Italian Industrial Hygienists Association. Annals of Work Exposures and Health, 2020, 64, 559-564.	0.6	40
20	Personal carbon monoxide exposure levels: contribution of local sources to exposures and microenvironment concentrations in Milan. Journal of Exposure Science and Environmental Epidemiology, 2004, 14, 312-322.	1.8	39
21	Airborne particulate matter and gaseous air pollutants in residential structures in Lodi province, Italy. Indoor Air, 2011, 21, 489-500.	2.0	39
22	Indoor gaseous air pollutants determinants in office buildings—The OFFICAIR project. Indoor Air, 2020, 30, 76-87.	2.0	39
23	Accuracy Evaluation of Three Modelling Tools for Occupational Exposure Assessment. Annals of Work Exposures and Health, 2017, 61, 284-298.	0.6	36
24	Precision and Accuracy of a Direct-Reading Miniaturized Monitor in PM2.5 Exposure Assessment. Sensors, 2018, 18, 3089.	2.1	36
25	Urinary hydroxylated metabolites of polycyclic aromatic hydrocarbons as biomarkers of exposure in asphalt workers. Biomarkers, 2007, 12, 221-239.	0.9	35
26	Comparison between Personal and Individual Exposure to Urban Air Pollutants. Aerosol Science and Technology, 2010, 44, 370-379.	1.5	34
27	Field comparison of instruments for exposure assessment of airborne ultrafine particles and particulate matter. Atmospheric Environment, 2017, 154, 274-284.	1.9	33
28	Assessment through Environmental and Biological Measurements of Total Daily Exposure to Volatile Organic Compounds of Office Workers in Milan, Italy. Indoor Air, 2000, 10, 258-268.	2.0	32
29	HBM4EU chromates study - Overall results and recommendations for the biomonitoring of occupational exposure to hexavalent chromium. Environmental Research, 2022, 204, 111984.	3.7	32
30	Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors, 2021, 21, 4513.	2.1	30
31	Biological monitoring of human exposure to acephate. Archives of Environmental Contamination and Toxicology, 1990, 19, 782-788.	2.1	29
32	Evaluation of Exposure to PAHs in Asphalt Workers by Environmental and Biological Monitoring. Annals of the New York Academy of Sciences, 2006, 1076, 405-420.	1.8	29
33	Personal Exposure of Traffic Police Officers to Particulate Matter, Carbon Monoxide, and Benzene in the City of Milan, Italy. Journal of Occupational and Environmental Hygiene, 2010, 7, 342-351.	0.4	29
34	The use of S-phenylmercapturic acid as a biomarker in molecular epidemiology studies of benzene. Chemico-Biological Interactions, 2005, 153-154, 97-102.	1.7	28
35	Particulate-bound polycyclic aromatic hydrocarbon sources and determinants in residential homes. Environmental Pollution, 2016, 218, 16-25.	3.7	26
36	Higher health effects of ambient particles during the warm season: The role of infiltration factors. Science of the Total Environment, 2018, 627, 67-77.	3.9	24

DOMENICO M CAVALLO

#	Article	IF	CITATIONS
37	Mass Concentration and Size-Distribution of Atmospheric Particulate Matter in an Urban Environment. Aerosol and Air Quality Research, 2017, 17, 1142-1155.	0.9	24
38	Personal exposure to airborne ultrafine particles in the urban area of Milan. Journal of Physics: Conference Series, 2009, 151, 012039.	0.3	23
39	In-vehicle airborne fine and ultra-fine particulate matter exposure: The impact of leading vehicle emissions. Environment International, 2019, 123, 407-416.	4.8	23
40	Urinary methyl tert-butyl ether and benzene as biomarkers of exposure to urban traffic. Environment International, 2011, 37, 404-411.	4.8	22
41	Temporal Variation of Size-Fractionated Particulate Matter and Carbon Monoxide in Selected Microenvironments of the Milan Urban Area. Journal of Occupational and Environmental Hygiene, 2013, 10, 652-662.	0.4	22
42	Asbestos Lung Burden in Necroscopic Samples from the General Population of Milan, Italy. Annals of Occupational Hygiene, 2015, 59, 909-921.	1.9	22
43	Toxic trace metals in size-segregated fine particulate matter: Mass concentration, respiratory deposition, and risk assessment. Environmental Pollution, 2020, 266, 115242.	3.7	22
44	How to Obtain a Reliable Estimate of Occupational Exposure? Review and Discussion of Models' Reliability. International Journal of Environmental Research and Public Health, 2019, 16, 2764.	1.2	20
45	Commuters' Personal Exposure Assessment and Evaluation of Inhaled Dose to Different Atmospheric Pollutants. International Journal of Environmental Research and Public Health, 2020, 17, 3357.	1.2	19
46	Evaluating the Environmental Impacts of Personal Protective Equipment Use by the General Population during the COVID-19 Pandemic: A Case Study of Lombardy (Northern Italy). Environments - MDPI, 2021, 8, 33.	1.5	19
47	Engineered nanomaterials exposure in the production of graphene. Aerosol Science and Technology, 2016, 50, 812-821.	1.5	17
48	Sensitivity Analyses of Exposure Estimates from a Quantitative Job-exposure Matrix (SYN-JEM) for Use in Community-based Studies. Annals of Occupational Hygiene, 2012, 57, 98-106.	1.9	16
49	VOCs Measurements in Residential Buildings: Quantification via Thermal Desorption and Assessment of Indoor Concentrations in a Case-Study. Atmosphere, 2019, 10, 57.	1.0	16
50	Assessment of Exposure to Polycyclic Aromatic Hydrocarbons (PAH) in Italian Asphalt Workers. Journal of Occupational and Environmental Hygiene, 2007, 4, 87-99.	0.4	15
51	Commuting by car, public transport, and bike: Exposure assessment and estimation of the inhaled dose of multiple airborne pollutants. Atmospheric Environment, 2021, 262, 118613.	1.9	15
52	Maternal air pollution exposure during the first trimester of pregnancy and markers of inflammation and endothelial dysfunction. Environmental Research, 2022, 212, 113216.	3.7	15
53	Probabilistic approach for the risk assessment of nanomaterials: A case study for graphene nanoplatelets. International Journal of Hygiene and Environmental Health, 2019, 222, 76-83.	2.1	14
54	Multi-element analysis of size-segregated fine and ultrafine particulate via Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Analytica Chimica Acta, 2018, 1043, 11-19.	2.6	13

#	Article	IF	CITATIONS
55	Is particulate air pollution at the front door a good proxy of residential exposure?. Environmental Pollution, 2016, 213, 347-358.	3.7	12
56	Environmental and biological monitoring of personal exposure to air pollutants of adult people living in a metropolitan area. Science of the Total Environment, 2021, 767, 144916.	3.9	12
57	Airborne Concentrations of Chrysotile Asbestos in Serpentine Quarries and Stone Processing Facilities in Valmalenco, Italy. Annals of Occupational Hygiene, 2012, 56, 671-83.	1.9	11
58	Estimation of the Inhaled Dose of Airborne Pollutants during Commuting: Case Study and Application for the General Population. International Journal of Environmental Research and Public Health, 2020, 17, 6066.	1.2	11
59	Dermal exposure assessment of polycyclic aromatic hydrocarbons: in vitro percutaneous penetration from coal dust. Toxicology and Industrial Health, 2001, 17, 17-21.	0.6	10
60	Modeling Population Exposure to Ultrafine Particles in a Major Italian Urban Area. International Journal of Environmental Research and Public Health, 2014, 11, 10641-10662.	1.2	10
61	Estimation of the Inhaled Dose of Pollutants in Different Micro-Environments: A Systematic Review of the Literature. Toxics, 2021, 9, 140.	1.6	10
62	Particulate matter indoors: a strategy to sample and monitor size-selective fractions. Applied Spectroscopy Reviews, 2022, 57, 675-704.	3.4	10
63	Titanium dioxide nanoparticles: occupational exposure assessment in the photocatalytic paving production. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	9
64	INSIDE Project: Individual Air Pollution Exposure, Extracellular Vesicles Signaling and Hypertensive Disorder Development in Pregnancy. International Journal of Environmental Research and Public Health, 2020, 17, 9046.	1.2	8
65	Toxicological assessment method for evaluating the occupational risk of dynamic olfactometry assessors. Regulatory Toxicology and Pharmacology, 2021, 125, 105003.	1.3	8
66	Combined and modular approaches for multicomponent monitoring of indoor air pollutants. Applied Spectroscopy Reviews, 2022, 57, 780-816.	3.4	8
67	Retrospective Exposure Assessment Methods Used in Occupational Human Health Risk Assessment: A Systematic Review. International Journal of Environmental Research and Public Health, 2020, 17, 6190.	1.2	7
68	Increased lung cancer risk among bricklayers in an Italian populationâ€based case–control study. American Journal of Industrial Medicine, 2012, 55, 423-428.	1.0	6
69	Dynamic Olfactometry and Oil Refinery Odour Samples: Application of a New Method for Occupational Risk Assessment. Toxics, 2022, 10, 202.	1.6	5
70	Application of Ultraviolet Spectrophotometry to Estimate Occupational Exposure to Airborne Polyaromatic Compounds in Asphalt Pavers. Journal of Occupational and Environmental Hygiene, 2007, 4, 412-419.	0.4	4
71	Occupational Exposure to Arsenic and Cadmium in Thin-Film Solar Cell Production. Annals of Occupational Hygiene, 2015, 59, 572-85.	1.9	4
72	Exposure and Management of the Health Risk for the Use of Formaldehyde and Xylene in a Large Pathology Laboratory. Annals of Work Exposures and Health, 2021, 65, 805-818.	0.6	4

#	Article	IF	CITATIONS
73	Assessment of Modeled Indoor Air Concentrations of Particulate Matter, Gaseous Pollutants, and Volatile Organic Compounds Emitted from Candles. Human and Ecological Risk Assessment (HERA), 2014, 20, 962-979.	1.7	3
74	Carbon Nanotubes: Probabilistic Approach for Occupational Risk Assessment. Nanomaterials, 2021, 11, 409.	1.9	3
75	Exposure to airborne particles associated with the handling of graphene nanoplatelets. Medicina Del Lavoro, 2018, 109, 285-296.	0.3	3
76	Response Letter to Koivisto <i>et al</i> . †Evaluating the Theoretical Background of STOFFENMANAGER® and the Advanced REACH Tool'. Annals of Work Exposures and Health, 2022, 66, 543-549.	0.6	3
77	Analysis of fibrous zeolites in the volcanic deposits of the Viterbo Province, Italy. Environmental Earth Sciences, 2011, 63, 861-871.	1.3	2
78	Evaluation of Personal Exposure to Air Pollutants and Estimation of the Inhaled Dose for Commuters in the Urban Area of Milan, Italy. Proceedings (mdpi), 2019, 44, .	0.2	2
79	Comparison between Communicated and Calculated Exposure Estimates Obtained through Three Modeling Tools. International Journal of Environmental Research and Public Health, 2020, 17, 4175.	1.2	2
80	Development of a Crosswalk to Translate Italian Occupation Codes to ISCO-68 Codes. Annals of Work Exposures and Health, 2022, , .	0.6	2
81	Exposure Assessment Methods in Studies on Waste Management and Health Effects: An Overview. Environments - MDPI, 2017, 4, 19.	1.5	1
82	How to obtain large amounts of location- and time-specific PM2.5 with homogeneous mass and composition? A possible approach, from particulate collection to chemical characterization. Atmospheric Pollution Research, 2021, 12, 101193.	1.8	1
83	Assessment of Personal PM Exposure in the PM-CARE Project. Epidemiology, 2006, 17, S531.	1.2	1
84	Asbestos Exposure in Patients with Malignant Pleural Mesothelioma included in the PRIMATE Study, Lombardy, Italy. International Journal of Environmental Research and Public Health, 2022, 19, 3390.	1.2	1
85	A simple approach to measure the radon equilibrium factor F from air filter gross beta counting. Radiation Protection Dosimetry, 2014, 160, 202-205.	0.4	0
86	Preface: Special Issue on Air Quality Assessment for Environmental Policy Support: Sources, Emissions, Exposures, and Health Impacts. Environments - MDPI, 2019, 6, 110.	1.5	0
87	Revisiting the evidence for physical distancing, face masks, and eye protection. Lancet, The, 2021, 398, 660-661.	6.3	0
88	Occupational Exposure to Atmospheric Pollutants in Traffic Wards. Epidemiology, 2006, 17, S519.	1.2	0
89	Biomonitoring of metal oxide nanoparticles in stainless steel welders. Safety and Health at Work, 2022, 13, S57.	0.3	0