
M. Rosa Bragulat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8068471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	External ear canal mycobiome of some rabbit breeds. Medical Mycology, 2021, 59, 683-693.	0.7	3
2	Transcriptome analysis of non-ochratoxigenic Aspergillus carbonarius strains and interactions between some black aspergilli species. International Journal of Food Microbiology, 2020, 317, 108498.	4.7	6
3	Intraspecific variability of growth and ochratoxin A production by Aspergillus carbonarius from different foods and geographical areas. International Journal of Food Microbiology, 2019, 306, 108273.	4.7	4
4	Impact of some environmental factors on growth and ochratoxin A production by Aspergillus niger and Aspergillus welwitschiae. International Journal of Food Microbiology, 2019, 291, 10-16.	4.7	27
5	Phenotypic and genetic diversity of Malassezia furfur from domestic and zoo animals. Medical Mycology, 2018, 56, 941-949.	0.7	7
6	Genomic diversity in ochratoxigenic and non ochratoxigenic strains of Aspergillus carbonarius. Scientific Reports, 2018, 8, 5439.	3.3	12
7	Black aspergilli and ochratoxin A-producing species in foods. Current Opinion in Food Science, 2018, 23, 1-10.	8.0	30
8	Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the <i>Cryptococcus</i> Genus. MSphere, 2017, 2, .	2.9	124
9	Characterization and phylogenetic analysis of a Cunninghamella bertholletiae isolate from a bottlenose dolphin (Tursiops truncatus). Revista Iberoamericana De Micologia, 2017, 34, 215-219.	0.9	4
10	Study on the presence of ochratoxin α in cultures of ochratoxigenic and non- ochratoxigenic strains of Aspergillus carbonarius. PLoS ONE, 2017, 12, e0185986.	2.5	7
11	Characterization of the species Malassezia pachydermatis and re-evaluation of its lipid dependence using a synthetic agar medium. PLoS ONE, 2017, 12, e0179148.	2.5	22
12	New lipid-dependent Malassezia species from parrots. Revista Iberoamericana De Micologia, 2016, 33, 92-99.	0.9	44
13	Rapid genome resequencing of an atoxigenic strain of Aspergillus carbonarius. Scientific Reports, 2015, 5, 9086.	3.3	15
14	Real time quantitative expression study of a polyketide synthase gene related to ochratoxin a biosynthesis in Aspergillus niger. Food Control, 2015, 53, 147-150.	5.5	10
15	A new inÂvitro method to detect growth and ochratoxin A-producing ability of multiple fungal species commonly found in food commodities. Food Microbiology, 2014, 44, 243-248.	4.2	12
16	Characterization of nonochratoxigenic strains of Aspergillus carbonarius from grapes. Food Microbiology, 2013, 36, 135-141.	4.2	22
17	Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain. Food Microbiology, 2012, 32, 97-103.	4.2	41
18	<i>Hortaea werneckii</i> isolated from silicone scuba diving equipment in Spain. Medical Mycology, 2012. 50. 852-857.	0.7	13

#	Article	IF	CITATIONS
19	Temperature and incubation time effects on growth and ochratoxin A production by Aspergillus sclerotioniger and Aspergillus lacticoffeatus on culture media. Letters in Applied Microbiology, 2011, 52, 208-212.	2.2	9
20	Effect of water activity, temperature and incubation time on growth and ochratoxin A production by Aspergillus niger and Aspergillus carbonarius on maize kernels. International Journal of Food Microbiology, 2011, 147, 53-57.	4.7	61
21	Ochratoxin A Producing Species in the Genus Penicillium. Toxins, 2010, 2, 1111-1120.	3.4	97
22	Comparison of two selective culture media for the detection ofFusariuminfection in conventional and transgenic maize kernels. Letters in Applied Microbiology, 2010, 50, 270-275.	2.2	10
23	In vitro activity of imazalil against Penicillium expansum: Comparison of the CLSI M38-A broth microdilution method with traditional techniques. International Journal of Food Microbiology, 2009, 129, 26-29.	4.7	19
24	Early discrimination of fungal species responsible of ochratoxin A contamination of wine and other grape products using an electronic nose. Mycotoxin Research, 2009, 25, 187-192.	2.3	23
25	Thiabendazole resistance and mutations in the β-tubulin gene ofPenicillium expansumstrains isolated from apples and pears with blue mold decay. FEMS Microbiology Letters, 2009, 297, 189-195.	1.8	21
26	Comparison of methods to detect resistance ofPenicillium expansumto thiabendazole. Letters in Applied Microbiology, 2009, 48, 241-246.	2.2	6
27	Low occurrence of patulin- and citrinin-producing species isolated from grapes. Letters in Applied Microbiology, 2008, 47, 286-289.	2.2	33
28	Occurrence of Penicillium verrucosum in retail wheat flours from the Spanish market. Food Microbiology, 2008, 25, 642-647.	4.2	44
29	Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. International Journal of Food Microbiology, 2008, 126, 43-48.	4.7	59
30	Effect of gentian violet on the growth of the N and T RFLP types of the Aspergillus niger aggregate. Journal of Microbiological Methods, 2008, 75, 81-85.	1.6	2
31	Ochratoxin A-producing fungi from grapes intended for liqueur wine production. Food Microbiology, 2006, 23, 541-545.	4.2	45
32	Study of the effect of water activity and temperature on ochratoxin A production by Aspergillus carbonarius. Food Microbiology, 2006, 23, 634-640.	4.2	54
33	Effect of water activity on ochratoxin A production by Aspergillus niger aggregate species. International Journal of Food Microbiology, 2006, 108, 188-195.	4.7	62
34	RFLP characterization of Aspergillus niger aggregate species from grapes from Europe and Israel. International Journal of Food Microbiology, 2006, 111, S18-S21.	4.7	36
35	Mycobiota and ochratoxin A producing fungi from Spanish wine grapes. International Journal of Food Microbiology, 2006, 111, S40-S45.	4.7	68
36	Effect of pH on ochratoxin A production byAspergillus nigeraggregate species. Food Additives and Contaminants, 2006, 23, 616-622.	2.0	15

M. Rosa Bragulat

#	Article	IF	CITATIONS
37	Ochratoxin A producing fungi from Spanish vineyards. Advances in Experimental Medicine and Biology, 2006, 571, 173-179.	1.6	11
38	Ochratoxigenic species from Spanish wine grapes. International Journal of Food Microbiology, 2005, 98, 125-130.	4.7	130
39	Influence of pH and Incubation Time on Ochratoxin A Production by Aspergillus carbonarius in Culture Media. Journal of Food Protection, 2005, 68, 1435-1440.	1.7	24
40	DNA-based characterization of ochratoxin-A-producing and non-producing Aspergillus carbonarius strains from grapes. Research in Microbiology, 2005, 156, 375-381.	2.1	22
41	Selective Efficacy of Culture Media Recommended for Isolation and Enumeration of Fusarium spp Journal of Food Protection, 2004, 67, 207-211.	1.7	29
42	Effects of temperature and incubation time on production of ochratoxin A by black aspergilli. Research in Microbiology, 2004, 155, 861-866.	2.1	114
43	Aspergillus carbonarius as the Main Source of Ochratoxin A Contamination in Dried Vine Fruits from the Spanish Market. Journal of Food Protection, 2003, 66, 504-506.	1.7	214
44	What is the source of ochratoxin A in wine?. International Journal of Food Microbiology, 2002, 79, 213-215.	4.7	259
45	Current Importance of Ochratoxin A–Producing Aspergillus spp Journal of Food Protection, 2001, 64, 903-906.	1.7	158
46	An easy screening method for fungi producing ochratoxin A in pure culture. International Journal of Food Microbiology, 2001, 71, 139-144.	4.7	304
47	Pneumocystis carinii pneumonia in a Yorkshire terrier dog. Medical Mycology, 2000, 38, 451-453.	0.7	10
48	Fumonisin Production by Fusarium Species Isolated from Cereals and Feeds in Spain. Journal of Food Protection, 1999, 62, 811-813.	1.7	26
49	Surveillance of Fumonisins in Maize-Based Feeds and Cereals from Spain. Journal of Agricultural and Food Chemistry, 1999, 47, 4707-4710.	5.2	76
50	New Ochratoxigenic Species in the Genus Aspergillus. Journal of Food Protection, 1997, 60, 1580-1582.	1.7	35
51	Dermatophytes isolated from domestic animals in Barcelona, Spain. Mycopathologia, 1997, 137, 107-113.	3.1	90
52	Malachite green agar, a new selective medium for Fusarium spp. Mycopathologia, 1997, 137, 173-178.	3.1	53
53	Occurrence of Fusarium Species and Fumonisins in Some Animal Feeds and Raw Materials. Cereal Research Communications, 1997, 25, 355-356.	1.6	1
54	Mycoflora and fumonisin-producing strains ofFusarium moniliforme in mixed poultry feeds and component raw material. Mycopathologia, 1996, 133, 181-184.	3.1	16

M. Rosa Bragulat

#	Article	IF	CITATIONS
55	Seasonal study of the fungal biota of the fur of dogs. Mycopathologia, 1996, 133, 1-7.	3.1	56
56	Dyes as fungal inhibitors: effect on colony enumeration. Journal of Applied Bacteriology, 1995, 79, 578-582.	1.1	17
57	Cryptococcosis in a cat seropositive for feline immunodeficiency virus. Mycoses, 1995, 38, 131-133.	4.0	13
58	A mycological survey on mixed poultry feeds and mixed rabbit feeds. Journal of the Science of Food and Agriculture, 1995, 67, 215-220.	3.5	26
59	Mycoflora and Aflatoxin-Producing Strains in Animal Mixed Feeds. Journal of Food Protection, 1994, 57, 256-258.	1.7	69
60	Ochratoxin A production by strains of Aspergillus niger var. niger. Applied and Environmental Microbiology, 1994, 60, 2650-2652.	3.1	340
61	Sodium chloride tolerance in strains ofEpidermophyton floccosum andEpidermophyton stockdaleae. Mycopathologia, 1993, 124, 153-156.	3.1	2
62	Dyes as fungal inhibitors: effect on colony diameter. Applied and Environmental Microbiology, 1991, 57, 2777-2780.	3.1	34
63	The growth of Epidermophyton floccosum and E. stockdaleae at different temperatures. Mycopathologia, 1990, 112, 157-163.	3.1	5
64	Sensitivity of some strains of the genus Epidermophyton to different antifungal agents. Mycopathologia, 1989, 105, 153-156.	3.1	6
65	Comparison of some screening methods for aflatoxigenic moulds. Mycopathologia, 1988, 104, 75-79.	3.1	19
66	Further observations on the keratinolytic activity of strains of the genus Epidermophyton. Mycopathologia, 1987, 98, 41-43.	3.1	3
67	Experimental dermatophytoses produced by E. floccosum in guinea pigs. Mycopathologia, 1987, 98, 45-47.	3.1	2
68	Study of the variation of the Malassezia load in the interdigital fold of dogs with pododermatitis. Veterinary Research Communications, 0, , .	1.6	0