Elmostafa Bahraoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8068060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 Envelope (E) Protein Binds and Activates TLR2 Pathway: A Novel Molecular Target for COVID-19 Interventions. Viruses, 2022, 14, 999.	1.5	23
2	HIV-1 Tat – TLR4/MD2 interaction drives the expression of IDO-1 in monocytes derived dendritic cells through NF-κB dependent pathway. Scientific Reports, 2020, 10, 8177.	1.6	14
3	Trimeric heptad repeat synthetic peptides HR1 and HR2 efficiently inhibit HIV-1 entry. Bioscience Reports, 2019, 39, .	1.1	6
4	Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8 ⁺ T _{EM} and T _{RM} Cell Responses against Herpesvirus Infection and Disease. Journal of Virology, 2018, 92, .	1.5	20
5	CXCL17 Chemokine–Dependent Mobilization of CXCR8+CD8+ Effector Memory and Tissue-Resident Memory T Cells in the Vaginal Mucosa Is Associated with Protection against Genital Herpes. Journal of Immunology, 2018, 200, 2915-2926.	0.4	42
6	HIV-1 Envelope Glycoproteins Induce the Production of TNF-α and IL-10 in Human Monocytes by Activating Calcium Pathway. Scientific Reports, 2018, 8, 17215.	1.6	31
7	CXCL10/CXCR3-Dependent Mobilization of Herpes Simplex Virus-Specific CD8 + T EM and CD8 + T RM Cells within Infected Tissues Allows Efficient Protection against Recurrent Herpesvirus Infection and Disease. Journal of Virology, 2017, 91, .	1.5	40
8	PKC-Î′ isoform plays a crucial role in Tat-TLR4 signalling pathway to activate NF-κB and CXCL8 production. Scientific Reports, 2017, 7, 2384.	1.6	10
9	HIV-1 Tat Protein Activates both the MyD88 and TRIF Pathways To Induce Tumor Necrosis Factor Alpha and Interleukin-10 in Human Monocytes. Journal of Virology, 2016, 90, 5886-5898.	1.5	43
10	HIV-1 Tat Protein Induces Production of Proinflammatory Cytokines by Human Dendritic Cells and Monocytes/Macrophages through Engagement of TLR4-MD2-CD14 Complex and Activation of NF-ήB Pathway. PLoS ONE, 2015, 10, e0129425.	1.1	71
11	Promoter-Dependent Translation Controlled by p54nrb and hnRNPM during Myoblast Differentiation. PLoS ONE, 2015, 10, e0136466.	1.1	19
12	E5564 inhibits immunosuppressive cytokine IL-10 induction promoted by HIV-1 Tat protein. Virology Journal, 2014, 11, 214.	1.4	5
13	HIV-1 Tat Protein Induces PD-L1 (B7-H1) Expression on Dendritic Cells through Tumor Necrosis Factor Alpha- and Toll-Like Receptor 4-Mediated Mechanisms. Journal of Virology, 2014, 88, 6672-6689.	1.5	48
14	HIV-1 Tat protein binds to TLR4-MD2 and signals to induce TNF- $\hat{l}\pm$ and IL-10. Retrovirology, 2013, 10, 123.	0.9	63
15	HIV-1 Tat Protein Induces the Production of IDO in Human Monocyte Derived-Dendritic Cells through a Direct Mechanism: Effect on T Cells Proliferation. PLoS ONE, 2013, 8, e74551.	1.1	43
16	Protein kinase C-delta regulates HIV-1 replication at an early post-entry step in macrophages. Retrovirology, 2012, 9, 37.	0.9	37
17	Cationic nanoglycolipidic particles as vector and adjuvant for the study of the immunogenicity of SIV Nef protein. International Journal of Pharmaceutics, 2012, 423, 116-123.	2.6	4
18	Fusion Intermediates of HIVâ€1 gp41 as Targets for Antibody Production: Design, Synthesis, and HR1–HR2 Complex Purification and Characterization of Generated Antibodies, ChemMedChem, 2010, 5, 1907-1918	1.6	7

Elmostafa Bahraoui

#	Article	IF	CITATIONS
19	Structureâ€antigenicity of the V3 region of SIVmac envelope glycoprotein. Journal of Peptide Science, 2010, 16, 48-57.	0.8	0
20	Development and Characterization of Peptidic Fusion Inhibitors Derived from HIVâ€1 gp41 with Partial <scp>D</scp> â€Amino Acid Substitutions. ChemMedChem, 2009, 4, 570-581.	1.6	21
21	HIV-1 Tat protein induces IL-10 production by an alternative TNF-α-independent pathway in monocytes: Role of PKC-δand p38 MAP kinase. Cellular Immunology, 2008, 253, 45-53.	1.4	33
22	HIV-1 Tat protein induces TNF-α and IL-10 production by human macrophages: Differential implication of PKC-βII and -δ isozymes and MAP kinases ERK1/2 and p38. Cellular Immunology, 2008, 254, 46-55.	1.4	32
23	HIV-1 Tat protein induces IL-10 production in monocytes by classical and alternative NF-κB pathways. European Journal of Cell Biology, 2008, 87, 947-962.	1.6	48
24	Human immunodeficiency virus type 1 Tat protein induces an intracellular calcium increase in human monocytes that requires DHP receptors: involvement in TNF-alpha production. Virology, 2005, 332, 316-328.	1.1	40
25	IL-10 production induced by HIV-1 Tat stimulation of human monocytes is dependent on the activation of PKC ? and ? isozymes. Microbes and Infection, 2004, 6, 1182-1190.	1.0	21
26	HIV-1 Tat induit la production de TNF-α par le monocyte humain: implication des voies du calcium et des PKC. Société De Biologie Journal, 2003, 197, 267-275.	0.3	12
27	HIVâ€l Tat protein induces interleukinâ€l0 in human peripheral blood monocytes: involvement of protein kinase Câ€l²ll and â€l̂´. FASEB Journal, 2002, 16, 546-554.	0.2	57
28	Effects of I- and d-REKR amino acid-containing peptides on HIV and SIV envelope glycoprotein precursor maturation and HIV and SIV replication. Biochemical Journal, 2002, 366, 863-872.	1.7	4
29	Comparative study of immune responses induced after immunization with plasmids encoding the HIV-1 Nef protein under the control of the CMV-IE or the muscle-specific desmin promoter. Vaccine, 2002, 20, 3322-3331.	1.7	25
30	Characterization of humoral and cellular immune responses in mice induced by immunization with HIV-1 Nef regulatory protein encapsulated in poly(dl-lactide-co-glycolide) microparticles. Molecular Immunology, 2002, 38, 607-618.	1.0	2
31	Signaling Pathways Triggered by HIV-1 Tat in Human Monocytes to Induce TNF-α. Virology, 2002, 303, 174-180.	1.1	41
32	Purification and Characterization of a Ca2+-Independent Endoprotease Activity from Peripheral Blood Lymphocytes: Involvement in HIV-1 gp160 Maturationâ€. Biochemistry, 2001, 40, 4800-4810.	1.2	13
33	La protéine Tat du VIH-1 induit la production d'IL-10 par le monocyte humain : implication de la voie PKC et de la voie calcique. Société De Biologie Journal, 2001, 195, 319-326.	0.3	13
34	Replication of HIV-1 viruses in the presence of the Portland α1-antitrypsin variant (α1-PDX) inhibitor. Biochemical Journal, 2001, 360, 127.	1.7	4
35	Replication of HIV-1 viruses in the presence of the Portland α1-antitrypsin variant (α1-PDX) inhibitor. Biochemical Journal, 2001, 360, 127-134.	1.7	3
36	Inhibition of HIV-2ROD replication in a lymphoblastoid cell line by the α1-antitrypsin Portland variant (α1-PDX) and the decRVKRcmk peptide: comparison with HIV-1LAI. Microbes and Infection, 2001, 3, 1073-1084.	1.0	3

Elmostafa Bahraoui

#	Article	IF	CITATIONS
37	Effect of alpha-1 antitrypsin Portland variant (α1-PDX) on HIV-1 replication. Biochemical Journal, 2000, 352, 91.	1.7	3
38	Effect of alpha-1 antitrypsin Portland variant (α1-PDX) on HIV-1 replication. Biochemical Journal, 2000, 352, 91-98.	1.7	21
39	Tat Protein of Human Immunodeficiency Virus Type 1 Induces Interleukin-10 in Human Peripheral Blood Monocytes: Implication of Protein Kinase C-Dependent Pathway. Journal of Virology, 2000, 74, 10551-10562.	1.5	111
40	Antigenic characterization and cytolocalization of P35, the major Mycoplasma penetrans antigen. Microbiology (United Kingdom), 1999, 145, 343-355.	0.7	19
41	Specificity of anti-Nef antibodies produced in mice immunized with DNA encoding the HIV-1 nef gene product. Vaccine, 1999, 18, 333-341.	1.7	4
42	Role of <i>Mycoplasma penetrans</i> Endonuclease P40 as a Potential Pathogenic Determinant. Infection and Immunity, 1999, 67, 4456-4462.	1.0	48
43	Characterization of humoral immune responses induced by immunization with plasmid DNA expressing HIV-1 Nef accessory protein. Vaccine, 1998, 16, 1523-1530.	1.7	4
44	A Longitudinal Study of Seroreactivity against <i>Mycoplasma penetrans</i> in HIV-Infected Homosexual Men: Association with Disease Progression. AIDS Research and Human Retroviruses, 1998, 14, 661-667.	0.5	30
45	Antigenicity of linear and cyclic peptides mimicking the disulfide loops in HIVâ€2 envelope glycoprotein: synthesis, reoxidation and purification. Chemical Biology and Drug Design, 1998, 51, 370-385.	1.2	4
46	Production and Characterization of Monoclonal Antibodies to Simian Immunodeficiency Virus Envelope Glycoproteins. AIDS Research and Human Retroviruses, 1997, 13, 1109-1119.	0.5	9
47	Linear and cyclic peptides mimicking the disulfide loops in HIV-2 envelope glycoprotein induced antibodies with different specificity. Molecular Immunology, 1997, 34, 1177-1189.	1.0	2
48	Specificity and Neutralizing Capacity of Three Monoclonal Antibodies Produced against the Envelope Glycoprotein of Simian Immunodeficiency Virus Isolate 251. Virology, 1995, 211, 339-344.	1.1	12
49	Kex2p: a model for cellular endoprotease processing human immunodeficiency virus type 1 envelope glycoprotein precursor. FEBS Journal, 1994, 225, 565-572.	0.2	10
50	Effects of calcium ions on proteolytic processing of HIV-1 gp160 precursor and on cell fusion. FEBS Letters, 1994, 338, 281-284.	1.3	24
51	Specificity of antipeptide antibodies produced against V2 and V3 regions of the external envelope of human immunodeficiency virus type 2. Molecular Immunology, 1994, 31, 361-369.	1.0	14
52	Evaluation of structure-antigenicity relationship of peptides from human immunodeficiency virus type 1 (HIV-1) p18 protein by circular dichroism. Molecular Immunology, 1993, 30, 503-512.	1.0	2
53	Study of the Interaction of HIV-1 and HIV-2 Envelope Glycoproteins with the CD4 Receptor and Role of N-Glycans. AIDS Research and Human Retroviruses, 1992, 8, 565-573.	0.5	32
54	N-Acetyl-β-d-glucosaminyl-binding properties of the envelope glycoprotein of human immunodeficiency virus type1. Carbohydrate Research, 1991, 213, 79-93.	1.1	18

#	Article	IF	CITATIONS
55	Immunogenicity of the Human Immunodeficiency Virus (HIV) Recombinant <i>nef</i> Gene Product. Mapping of T-Cell and B-Cell Epitopes in Immunized Chimpanzees. AIDS Research and Human Retroviruses, 1990, 6, 1087-1098.	0.5	35
56	The antigenic structure of a scorpion toxin. Molecular Immunology, 1989, 26, 503-513.	1.0	63
57	Accessibility of the Highly Conserved Amino- and Carboxy-Terminal Regions from HIV-1 External Envelope Glycoproteins. AIDS Research and Human Retroviruses, 1989, 5, 451-463.	0.5	8
58	Use of synthetic peptides for the detection of antibodies against the nef reguating protein in sera of HIV-infected patients. Aids, 1989, 3, 215-220.	1.0	40
59	Immunochemistry of scorpion toxins. Immunogenicity of peptide 19-28 a model of an accessible and relatively rigid region. FEBS Journal, 1987, 167, 371-375.	0.2	18