

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8067883/publications.pdf Version: 2024-02-01

WEN XI

#	Article	IF	CITATIONS
1	A review on removal of mercury from flue gas utilizing existing air pollutant control devices (APCDs). Journal of Hazardous Materials, 2022, 427, 128132.	6.5	58
2	Removal of gaseous H2S using microalgae porous carbons synthesized by thermal/microwave KOH activation. Journal of the Energy Institute, 2022, 101, 45-55.	2.7	15
3	A thermally activated double oxidants advanced oxidation system for gaseous H2S removal: Mechanism and kinetics. Chemical Engineering Journal, 2022, 434, 134430.	6.6	26
4	Fe2+/heat-coactivated PMS oxidation-absorption system for H2S removal from gas phase. Separation and Purification Technology, 2022, 286, 120458.	3.9	30
5	Oxidative removal of gaseous hydrogen sulfide by a dual ions-dual oxidants coupling activation system. Chemical Engineering Research and Design, 2022, 161, 454-465.	2.7	3
6	Biochars derived from by-products of microalgae pyrolysis for sorption of gaseous H2S. Journal of Environmental Chemical Engineering, 2022, 10, 107370.	3.3	17
7	Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review. Environmental Chemistry Letters, 2021, 19, 941-967.	8.3	68
8	Elemental mercury captureÂfrom industrial gas emissions using sulfides and selenides: a review. Environmental Chemistry Letters, 2021, 19, 1395-1411.	8.3	26
9	Carbon dioxide capture using liquid absorption methods: a review. Environmental Chemistry Letters, 2021, 19, 77-109.	8.3	165
10	Gaseous Hydrogen Sulfide Removal Using Macroalgae Biochars Modified Synergistically by H ₂ SO ₄ /H ₂ O ₂ . Chemical Engineering and Technology, 2021, 44, 698-709.	0.9	12
11	Porous Biochars Derived from Microalgae Pyrolysis for CO ₂ Adsorption. Energy & Fuels, 2021, 35, 7646-7656.	2.5	22
12	Adsorption of elemental mercury in flue gas using biomass porous carbons modified by microwave/hydrogen peroxide. Fuel, 2021, 291, 120152.	3.4	77
13	Experimental and kinetic study on HgO removal by microwave/hydrogen peroxide modified seaweed-based porous biochars. Environmental Technology and Innovation, 2021, 22, 101411.	3.0	23
14	Hg ⁰ Removal by Straw Biochars Prepared with Clean Microwave/H ₂ O ₂ Modification. Chemical Engineering and Technology, 2021, 44, 1460-1469.	0.9	8
15	A review on arsenic removal from coal combustion: Advances, challenges and opportunities. Chemical Engineering Journal, 2021, 414, 128785.	6.6	68
16	A Critical Review on Removal of Gaseous Pollutants Using Sulfate Radical-based Advanced Oxidation Technologies. Environmental Science & Technology, 2021, 55, 9691-9710.	4.6	89
17	Review on Removal of SO ₂ , NO _{<i>x</i>} , Mercury, and Arsenic from Flue Gas Using Green Oxidation Absorption Technology. Energy & Fuels, 2021, 35, 9775-9794.	2.5	34
18	Removal of pollutants from gas streams using Fenton (-like)-based oxidation systems: A review. Journal of Hazardous Materials, 2021, 416, 125927.	6.5	45

Wen Xu

#	Article	IF	CITATIONS
19	Removal of Elemental Mercury Using Seaweed Biomass-Based Porous Carbons Prepared from Microwave Activation and H ₂ O ₂ Modification. Energy & Fuels, 2021, 35, 2391-2401.	2.5	10
20	Preparation of Straw Porous Biochars by Microwave-Assisted KOH Activation for Removal of Gaseous H ₂ S. Energy & Fuels, 2021, 35, 18592-18603.	2.5	15
21	Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars. Fuel, 2020, 260, 116382.	3.4	185
22	Sorbents for hydrogen sulfide capture from biogas at low temperature: a review. Environmental Chemistry Letters, 2020, 18, 113-128.	8.3	49
23	Preparation of magnetic Co-Fe modified porous carbon from agricultural wastes by microwave and steam activation for mercury removal. Journal of Hazardous Materials, 2020, 381, 120981.	6.5	125
24	Novel Simultaneous Removal Technology of NO and SO ₂ Using a Semi-Dry Microwave Activation Persulfate System. Environmental Science & Technology, 2020, 54, 2031-2042.	4.6	70
25	Photocatalytic oxidation removal of elemental mercury from flue gas.ÂA review. Environmental Chemistry Letters, 2020, 18, 417-431.	8.3	40
26	Novel carbon-based sorbents for elemental mercury removal from gas streams: A review. Chemical Engineering Journal, 2020, 391, 123514.	6.6	112
27	Study on removal of gaseous hydrogen sulfide based on macroalgae biochars. Journal of Natural Gas Science and Engineering, 2020, 73, 103068.	2.1	52
28	Review on Magnetic Adsorbents for Removal of Elemental Mercury from Flue Gas. Energy & Fuels, 2020, 34, 13473-13490.	2.5	51
29	Absorption of H ₂ S from Gas Streams by the Wet Ultraviolet/Persulfate Oxidation Process: Mechanism and Kinetics. Energy & Fuels, 2020, 34, 8037-8045.	2.5	21
30	Removal of CO ₂ from Flue Gas Using Seaweed Porous Carbons Prepared by Urea Doping and KOH Activation. Energy & Fuels, 2020, 34, 16411-16422.	2.5	15
31	Oxidation absorption of hydrogen sulfide from gas stream using vacuum ultraviolet/H2O2/urea wet scrubbing system. Chemical Engineering Research and Design, 2020, 140, 348-355.	2.7	27
32	Removal of gaseous hydrogen sulfide using ultraviolet/Oxone-induced oxidation scrubbing system. Chemical Engineering Journal, 2020, 393, 124740.	6.6	36
33	A review on application of cerium-based oxides in gaseous pollutant purification. Separation and Purification Technology, 2020, 250, 117181.	3.9	79
34	Removal of nitric oxide from flue gas using novel microwave-activated double oxidants system. Chemical Engineering Journal, 2020, 393, 124754.	6.6	58
35	State-of-the-art review on capture of CO2 using adsorbents prepared from waste materials. Chemical Engineering Research and Design, 2020, 139, 1-25.	2.7	90
36	A review on coal fly ash-based adsorbents for mercury and arsenic removal. Journal of Cleaner Production, 2020, 267, 122143.	4.6	106

Wen Xu

#	Article	IF	CITATIONS
37	Removal of Carbon Monoxide from Simulated Flue Gas Using Two New Fenton Systems: Mechanism and Kinetics. Environmental Science & Technology, 2019, 53, 10387-10397.	4.6	27
38	Removal of Elemental Mercury from Flue Gas Using Microwave/Ultrasound-Activated Ce–Fe Magnetic Porous Carbon Derived from Biomass Straw. Energy & Fuels, 2019, 33, 8394-8402.	2.5	39
39	Removal of Gaseous Hydrogen Sulfide by a Photo-Fenton Wet Oxidation Scrubbing System. Energy & Fuels, 2019, 33, 10812-10819.	2.5	33
40	Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas. Science of the Total Environment, 2019, 697, 134049.	3.9	101
41	Mercury removal from flue gas by magnetic iron-copper oxide modified porous char derived from biomass materials. Fuel, 2019, 256, 115977.	3.4	96
42	Removal of gaseous elemental mercury using seaweed chars impregnated by NH4Cl and NH4Br. Journal of Cleaner Production, 2019, 216, 277-287.	4.6	69
43	Elimination of nitric oxide using new Fenton process based on synergistic catalysis: Optimization and mechanism. Chemical Engineering Journal, 2019, 372, 92-98.	6.6	64
44	Oxidation removal of gaseous HgO using enhanced-Fenton system in a bubble column reactor. Fuel, 2019, 246, 358-364.	3.4	76
45	Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal. Chemical Engineering Journal, 2019, 370, 944-951.	6.6	54
46	Oxidation Removal of CO from Flue Gas Using Two Fenton-like Wet Scrubbing Systems. Energy & Fuels, 2019, 33, 2961-2966.	2.5	17
47	Oxidative Absorption of Elemental Mercury from Flue Gas Using a Modified Fenton-like Wet Scrubbing System. Energy & Fuels, 2019, 33, 3028-3033.	2.5	23
48	Gaseous elemental mercury removal using VUV and heat coactivation of Oxone/H2O/O2 in a VUV-spraying reactor. Fuel, 2019, 243, 352-361.	3.4	54
49	Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon. Chemical Engineering Journal, 2019, 366, 41-49.	6.6	103
50	Gaseous Elemental Mercury Removal Using Combined Metal Ions and Heat Activated Peroxymonosulfate/H ₂ 2 Solutions. AICHE Journal, 2019, 65, 161-174.	1.8	34
51	A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas. Environmental Chemistry Letters, 2019, 17, 259-276.	8.3	53
52	Separation of hydrogen sulfide from gas phase using Ce3+/Mn2+-enhanced fenton-like oxidation system. Chemical Engineering Journal, 2019, 359, 1486-1492.	6.6	53
53	Removal of gaseous hydrogen sulfide using Fenton reagent in a spraying reactor. Fuel, 2019, 239, 70-75.	3.4	79
54	Removal of elemental mercury from flue gas using red mud impregnated by KBr and KI reagent. Chemical Engineering Journal, 2018, 341, 483-494.	6.6	84

Wen Xu

#	Article	IF	CITATIONS
55	A review on modification methods of adsorbents for elemental mercury from flue gas. Chemical Engineering Journal, 2018, 346, 692-711.	6.6	147
56	Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS). Chemosphere, 2018, 190, 431-441.	4.2	155
57	Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat coactivated persulfate system. Journal of Hazardous Materials, 2018, 342, 326-334.	6.5	184
58	Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound. Fuel Processing Technology, 2018, 170, 21-31.	3.7	99
59	Removal of Hg ⁰ from Simulated Flue Gas by Ultraviolet Light/Heat/Persulfate Process in an UV-Impinging Stream Reactor. Energy & Fuels, 2018, 32, 12416-12425.	2.5	27
60	Elemental mercury removal from flue gas using heat and Co2+/Fe2+ coactivated oxone oxidation system. Chemical Engineering Journal, 2018, 348, 464-475.	6.6	99
61	Removal of elemental Mercury from flue gas using wheat straw chars modified by K ₂ FeO ₄ reagent. Environmental Technology (United Kingdom), 2017, 38, 3047-3054.	1.2	22
62	Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation. Chemical Engineering Journal, 2017, 326, 169-181.	6.6	156
63	Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O ₂ /H ₂ O/H ₂ O ₂ System in A Wet VUV–Spraying Reactor. Environmental Science & Technology, 2016, 50, 12966-12975.	4.6	156
64	Removal of HgO and simultaneous removal of HgO/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor. Fuel, 2015, 145, 180-188.	3.4	84
65	Removal of Hg ⁰ from flue gas using two homogeneous photoâ€fentonâ€like reactions. AICHE Journal, 2015, 61, 1322-1333.	1.8	60
66	Removal of Elemental Mercury from Flue Gas by Thermally Activated Ammonium Persulfate in A Bubble Column Reactor. Environmental Science & Technology, 2014, 48, 12181-12189.	4.6	159
67	Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, 2010, 162, 1006-1011.	6.6	237