Zhong-Shuai Wu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8067580/zhong-shuai-wu-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 30,317 214 173 h-index g-index citations papers 34,701 14.3 234 7.53 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
214	Phosphorus doping and phosphates coating for nickel molybdate/nickel molybdate hydrate enabling efficient overall water splitting. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 384-392	9.3	3
213	A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. <i>Journal of Energy Chemistry</i> , 2022 , 64, 442-450	12	13
212	K-Functionalized Carbon Quantum Dots-Induced Interface Assembly of Carbon Nanocages for Ultrastable Potassium Storage Performance <i>Small Methods</i> , 2022 , e2101627	12.8	O
211	2D Cu2lk Se@graphene multifunctional interlayer boosting polysulfide rapid conversion and uniform Li2S nucleation for high performance LiB batteries. 2D Materials, 2022, 9, 025028	5.9	
210	1.6[V high-voltage aqueous symmetric micro-pseudocapacitors based on two-dimensional polypyrrole/graphene nanosheets. <i>Carbon</i> , 2022 , 194, 240-247	10.4	0
209	Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. <i>ACS Energy Letters</i> , 2022 , 7, 267-281	20.1	3
208	Rapid fabrication of high-quality few-layer graphene through gel-phase electrochemical exfoliation of graphite for high-energy-density ionogel-based micro-supercapacitors. <i>Carbon</i> , 2022 , 196, 203-212	10.4	2
207	Multi-Layer Printable Lithium Ion Micro-Batteries with Remarkable Areal Energy Density and Flexibility for Wearable Smart Electronics. <i>Small</i> , 2021 , e2104506	11	2
206	Ultrahigh-rate and high-frequency MXene micro-supercapacitors for kHz AC line-filtering. <i>Journal of Energy Chemistry</i> , 2021 , 69, 1-1	12	2
205	Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications. <i>EScience</i> , 2021 ,		5
204	Recent Progress on Two-Dimensional Materials. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2021 , 2108017-0	3.8	69
203	HMnO/MWCNTs as an electrocatalyst for rechargeable relatively closed system Li-O batteries. <i>Chemical Communications</i> , 2021 , 57, 11823-11826	5.8	1
202	In Situ Modulation of A-Site Vacancies in LaMnO Perovskite for Surface Lattice Oxygen Activation and Boosted Redox Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26747-26754	16.4	13
201	Scalable Production of Freestanding Few-Layer Borophene Single Crystalline Sheets as Efficient Electrocatalysts for Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2021 ,	16.7	5
200	Operando surface science methodology reveals surface effect in charge storage electrodes. National Science Review, 2021 , 8, nwaa289	10.8	6
199	Electrochemical impedance spectroscopy study of lithium-ion capacitors: Modeling and capacity fading mechanism. <i>Journal of Power Sources</i> , 2021 , 488, 229454	8.9	17
198	In Situ and Operando Characterizations of 2D Materials in Electrochemical Energy Storage Devices. <i>Small Science</i> , 2021 , 1, 2000076		23

(2021-2021)

197	High-Voltage Potassium Ion Micro-Supercapacitors with Extraordinary Volumetric Energy Density for Wearable Pressure Sensor System. <i>Advanced Energy Materials</i> , 2021 , 11, 2003835	21.8	20
196	Aqueous MXene/PH1000 Hybrid Inks for Inkjet-Printing Micro-Supercapacitors with Unprecedented Volumetric Capacitance and Modular Self-Powered Microelectronics. <i>Advanced Energy Materials</i> , 2021 , 11, 2100746	21.8	18
195	In Situ and Operando Characterizations of 2D Materials in Electrochemical Energy Storage Devices. <i>Small Science</i> , 2021 , 1, 2170010		3
194	High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of 40 IC. <i>Nano Energy</i> , 2021 , 82, 105688	17.1	12
193	Interfacial Engineering of Bifunctional Niobium (V)-Based Heterostructure Nanosheet Toward High Efficiency Lean-Electrolyte Lithium Bulfur Full Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 21023	1 ^{45.6}	24
192	Micro-Supercapacitors: High-Voltage Potassium Ion Micro-Supercapacitors with Extraordinary Volumetric Energy Density for Wearable Pressure Sensor System (Adv. Energy Mater. 17/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170065	21.8	
191	Oxygen defect enriched (NH4)2V10O25BH2O nanosheets for superior aqueous zinc-ion batteries. <i>Nano Energy</i> , 2021 , 84, 105876	17.1	59
190	Manipulating Crystallographic Orientation of Zinc Deposition for Dendrite-free Zinc Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101299	21.8	77
189	Micro-Supercapacitors: Aqueous MXene/PH1000 Hybrid Inks for Inkjet-Printing Micro-Supercapacitors with Unprecedented Volumetric Capacitance and Modular Self-Powered Microelectronics (Adv. Energy Mater. 23/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170088	21.8	О
188	Tetrabutylammonium-Intercalated 1T-MoS2 Nanosheets with Expanded Interlayer Spacing Vertically Coupled on 2D Delaminated MXene for High-Performance Lithium-Ion Capacitors. <i>Advanced Functional Materials</i> , 2021 , 31, 2104286	15.6	29
187	A perspective on graphene for supercapacitors: Current status and future challenges. <i>Journal of Energy Chemistry</i> , 2021 , 53, 354-357	12	17
186	Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. <i>Journal of Energy Chemistry</i> , 2021 , 54, 352-367	12	44
185	Lignin derived hierarchical porous carbon with extremely suppressed polyselenide shuttling for high-capacity and long-cycle-life lithiumBelenium batteries. <i>Journal of Energy Chemistry</i> , 2021 , 55, 476-4	8 12	11
184	Nitrogen-doped holey graphene nanoscrolls for high-energy and high-power supercapacitors. <i>Chinese Chemical Letters</i> , 2021 , 32, 914-917	8.1	5
183	A General Synthetic Strategy toward Highly Doped Pyridinic Nitrogen-Rich Carbons. <i>Advanced Functional Materials</i> , 2021 , 31, 2006076	15.6	12
182	Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc ion hybrid capacitors with remarkable rate capability. <i>Journal of Energy Chemistry</i> , 2021 , 56, 404-411	12	24
181	Toward high-performance and flexible all-solid-state micro-supercapacitors: MOF bulk vs. MOF nanosheets. <i>Chemical Engineering Journal</i> , 2021 , 413, 127520	14.7	15
180	Photopolymerized Gel Electrolyte with Unprecedented Room-Temperature Ionic Conductivity for High-Energy-Density Solid-State Sodium Metal Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2002930	21.8	21

179	Two-dimensional Boron Nitride for Electronics and Energy Applications. <i>Energy and Environmental Materials</i> , 2021 ,	13	1
178	Recent Advances on Carbon-Based Materials for High Performance Lithium-Ion Capacitors. <i>Batteries and Supercaps</i> , 2021 , 4, 407-428	5.6	8
177	An intrinsically flexible phase change film for wearable thermal managements. <i>Energy Storage Materials</i> , 2021 , 34, 508-514	19.4	51
176	Scalable and fast fabrication of graphene integrated micro-supercapacitors with remarkable volumetric capacitance and flexibility through continuous centrifugal coating. <i>Journal of Energy Chemistry</i> , 2021 , 52, 284-290	12	15
175	A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. <i>Energy and Environmental Science</i> , 2021 , 14, 2269-2277	35.4	18
174	Solid-state integrated micro-supercapacitor array construction with low-cost porous biochar. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 4772-4779	7.8	2
173	Engineering nanoreactors for metal@halcogen batteries. <i>Energy and Environmental Science</i> , 2021 , 14, 540-575	35.4	26
172	Multitasking MXene Inks Enable High-Performance Printable Microelectrochemical Energy Storage Devices for All-Flexible Self-Powered Integrated Systems. <i>Advanced Materials</i> , 2021 , 33, e2005449	24	64
171	A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation. <i>New Carbon Materials</i> , 2021 , 36, 189-197	4.4	7
170	Aqueous high-voltage all 3D-printed micro-supercapacitors with ultrahigh areal capacitance and energy density. <i>Journal of Energy Chemistry</i> , 2021 ,	12	6
169	Nitrogen-enriched graphene framework from a large-scale magnesiothermic conversion of CO2 with synergistic kinetics for high-power lithium-ion capacitors. <i>NPG Asia Materials</i> , 2021 , 13,	10.3	5
168	Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics. <i>Journal of Energy Chemistry</i> , 2021 ,	12	9
167	Recent Advances in Interface Engineering and Architecture Design of Air-Stable and Water-Resistant Lithium Metal Anodes. <i>Energy & Energy </i>	4.1	3
166	Ultrarapid synthesis Ni-Cu bifunctional electrocatalyst by self-etching electrodeposition for high-performance water splitting reaction. <i>Applied Surface Science</i> , 2021 , 561, 150030	6.7	4
165	Advanced design of cathodes and interlayers for high-performance lithium-selenium batteries. <i>SusMat</i> , 2021 , 1, 393-412		5
164	Room-temperature fast assembly of 3D macroscopically porous graphene frameworks for binder-free compact supercapacitors with high gravimetric and volumetric capacitances. <i>Journal of Energy Chemistry</i> , 2021 , 61, 23-28	12	12
163	Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. <i>Nature Communications</i> , 2021 , 12, 5786	17.4	9
162	Scalable fabrication of in-plane microscale self-powered integrated systems for fast-response and highly selective dual-channel gas detection. <i>Nano Energy</i> , 2021 , 88, 106253	17.1	4

(2020-2021)

161	Tailoring the defects of two-dimensional borocarbonitride nanomesh for high energy density micro-supercapacitor. <i>Energy Storage Materials</i> , 2021 , 42, 430-437	19.4	3
160	Two-dimensional materials and their derivatives for high performance phase change materials: emerging trends and challenges. <i>Energy Storage Materials</i> , 2021 , 42, 845-870	19.4	9
159	General synthesis of hollow mesoporous conducting polymers by dual-colloid interface co-assembly for high-energy-density micro-supercapacitors. <i>Journal of Energy Chemistry</i> , 2021 , 62, 145-	152	8
158	Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 426, 131893	14.7	11
157	Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. <i>Small Structures</i> , 2020 , 1, 2070003	8.7	
156	LithiumBulfur Batteries: Molecular-Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for LithiumBulfur Batteries (Adv. Energy Materials, 2020 , 10, 2070092	21.8	5
155	3D Flexible, Conductive, and Recyclable TiCT MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. <i>ACS Nano</i> , 2020 , 14, 8678-8688	16.7	92
154	Layer-by-layer stacked amorphous V2O5/Graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. <i>Energy Storage Materials</i> , 2020 , 31, 156-163	19.4	41
153	Recent Advancements and Perspective of High-Performance Printed Power Sources with Multiple Form Factors. <i>Electrochemical Energy Reviews</i> , 2020 , 3, 581-612	29.3	12
152	MXene for energy storage: present status and future perspectives. <i>JPhys Energy</i> , 2020 , 2, 032004	4.9	25
151	Zinc-Ion Batteries: 2D Amorphous V2O5/Graphene Heterostructures for High-Safety Aqueous Zn-Ion Batteries with Unprecedented Capacity and Ultrahigh Rate Capability (Adv. Energy Mater. 22/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070100	21.8	2
150	Sodium Ion Batteries: Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility (Adv. Energy Mater. 12/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070055	21.8	0
149	The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. <i>Advanced Functional Materials</i> , 2020 , 30, 1909035	15.6	79
148	A Two-Dimensional Mesoporous Polypyrrole@raphene Oxide Heterostructure as a Dual-Functional Ion Redistributor for Dendrite-Free Lithium Metal Anodes. <i>Angewandte Chemie</i> , 2020 , 132, 12245-1225	1 ^{3.6}	8
147	A Two-Dimensional Mesoporous Polypyrrole-Graphene Oxide Heterostructure as a Dual-Functional Ion Redistributor for Dendrite-Free Lithium Metal Anodes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12147-12153	16.4	69
146	2D Amorphous V2O5/Graphene Heterostructures for High-Safety Aqueous Zn-Ion Batteries with Unprecedented Capacity and Ultrahigh Rate Capability. <i>Advanced Energy Materials</i> , 2020 , 10, 2000081	21.8	128
145	Hierarchical Ordered Dual-Mesoporous Polypyrrole/Graphene Nanosheets as Bi-Functional Active Materials for High-Performance Planar Integrated System of Micro-Supercapacitor and Gas Sensor. <i>Advanced Functional Materials</i> , 2020 , 30, 1909756	15.6	55
144	Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries. <i>Energy Storage Materials</i> , 2020 , 27, 396-404	19.4	22

143	Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. <i>Energy and Environmental Science</i> , 2020 , 13, 821-829	35.4	47
142	Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility. <i>Advanced Energy Materials</i> , 2020 , 10, 1903698	21.8	67
141	High-Valence Nickel Single-Atom Catalysts Coordinated to Oxygen Sites for Extraordinarily Activating Oxygen Evolution Reaction. <i>Advanced Science</i> , 2020 , 7, 1903089	13.6	93
140	Bioinspired footed soft robot with unidirectional all-terrain mobility. <i>Materials Today</i> , 2020 , 35, 42-49	21.8	29
139	Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene. <i>Nano Energy</i> , 2020 , 72, 104741	17.1	27
138	Targeted synthesis and reaction mechanism discussion of Mo2C based insertion-type electrodes for advanced pseudocapacitors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7819-7827	13	5
137	Recent Advances and Promise of MXene-Based Nanostructures for High-Performance Metal Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2000706	15.6	93
136	Interfacial interaction-induced temperature-dependent mechanical property of graphene-PDMS nanocomposite. <i>Journal of Materials Science</i> , 2020 , 55, 1553-1561	4.3	9
135	Graphene encapsulated iron nitrides confined in 3D carbon nanosheet frameworks for high-rate lithium ion batteries. <i>Carbon</i> , 2020 , 159, 213-220	10.4	22
134	Recent Advances and Challenges of Two-Dimensional Materials for High-Energy and High-Power Lithium-Ion Capacitors. <i>Batteries and Supercaps</i> , 2020 , 3, 10-29	5.6	26
133	Substrate-Free and Shapeless Planar Micro-Supercapacitors. <i>Advanced Functional Materials</i> , 2020 , 30, 1908758	15.6	32
132	Rapid synthesis of dielectric tantalum-based oxynitrides. <i>Materials and Design</i> , 2020 , 187, 108416	8.1	3
131	Porous Graphene Materials: The Chemistry and Promising Applications of Graphene and Porous Graphene Materials (Adv. Funct. Mater. 41/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070275	15.6	17
130	LithiumBulfur Batteries: Dual-Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries (Adv. Energy Mater. 39/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070162	21.8	1
129	Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. <i>Carbon</i> , 2020 , 168, 701-709	10.4	43
128	Micro-supercapacitors powered integrated system for flexible electronics. <i>Energy Storage Materials</i> , 2020 , 32, 402-417	19.4	21
127	Unraveling the Nature of Excellent Potassium Storage in Small-Molecule Se@Peapod-Like N-Doped Carbon Nanofibers. <i>Advanced Materials</i> , 2020 , 32, e2003879	24	47
126	Hybrid Nanostructures: Recent Advances and Promise of MXene-Based Nanostructures for High-Performance Metal Ion Batteries (Adv. Funct. Mater. 47/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070310	15.6	3

125	NH Sensor Based on 2D Wormlike Polypyrrole/Graphene Heterostructures for a Self-Powered Integrated System. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 38674-38681	9.5	17	
124	Three dimensional Ti3C2 MXene nanoribbon frameworks with uniform potassiophilic sites for the dendrite-free potassium metal anodes. <i>Nanoscale Advances</i> , 2020 , 2, 4212-4219	5.1	20	
123	Zinc based micro-electrochemical energy storage devices: Present status and future perspective. <i>EcoMat</i> , 2020 , 2, e12042	9.4	7	
122	Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries. <i>Energy Storage Materials</i> , 2020 , 31, 470-491	19.4	17	
121	2D intrinsically defective RuO2/Graphene heterostructures as All-pH efficient oxygen evolving electrocatalysts with unprecedented activity. <i>Nano Energy</i> , 2020 , 78, 105185	17.1	21	
120	Dual-Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002271	21.8	67	
119	Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. <i>Small Structures</i> , 2020 , 1, 2000053	8.7	31	
118	Boosting Li-S battery performance by an efficient polysulfide double-blocking strategy. <i>FlatChem</i> , 2020 , 24, 100209	5.1	2	
117	Scalable fabrication of printed Zn//MnO planar micro-batteries with high volumetric energy density and exceptional safety. <i>National Science Review</i> , 2020 , 7, 64-72	10.8	80	
116	A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction. <i>Journal of Energy Chemistry</i> , 2020 , 43, 52-57	12	51	
115	Molecular-Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2000651	21.8	61	
114	Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type LiB batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 262-271	12	32	
113	One-Step Scalable Fabrication of Graphene-Integrated Micro-Supercapacitors with Remarkable Flexibility and Exceptional Performance Uniformity. <i>Advanced Functional Materials</i> , 2019 , 29, 1902860	15.6	64	
112	The Promise and Challenge of Phosphorus-Based Composites as Anode Materials for Potassium-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1901414	24	105	
111	A perspective on two-dimensional materials for planar micro-supercapacitors. <i>APL Materials</i> , 2019 , 7, 090902	5.7	18	
110	Preparation and interface modification of Si3N4f/SiO2 composites. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 2767-2771	9.1	2	
109	Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. <i>Energy and Environmental Science</i> , 2019 , 12, 1534-1541	35.4	129	
108	Screen-printing fabrication of high volumetric energy density micro-supercapacitors based on high-resolution thixotropic-ternary hybrid interdigital micro-electrodes. <i>Materials Chemistry Frontiers</i> 2019 3 626-635	7.8	24	

107	Two-dimensional materials for advanced Li-S batteries. <i>Energy Storage Materials</i> , 2019 , 22, 284-310	19.4	69
106	The Road Towards Planar Microbatteries and Micro-Supercapacitors: From 2D to 3D Device Geometries. <i>Advanced Materials</i> , 2019 , 31, e1900583	24	92
105	Nitrogen-doped hierarchical porous carbon with ultrathin graphitic framework for superior lithium storage. <i>Applied Surface Science</i> , 2019 , 493, 177-184	6.7	5
104	General Interfacial Self-Assembly Engineering for Patterning Two-Dimensional Polymers with Cylindrical Mesopores on Graphene. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10173-10178	16.4	53
103	General Interfacial Self-Assembly Engineering for Patterning Two-Dimensional Polymers with Cylindrical Mesopores on Graphene. <i>Angewandte Chemie</i> , 2019 , 131, 10279-10284	3.6	15
102	Ultrahigh Surface Area N-Doped Hierarchically Porous Carbon for Enhanced CO Capture and Electrochemical Energy Storage. <i>ChemSusChem</i> , 2019 , 12, 3541-3549	8.3	25
101	High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on TiC T MXene and Carbon Nanotubes Mediated by Redox Active Molecule. <i>ACS Nano</i> , 2019 , 13, 6899-6905	16.7	82
100	Shape-tailorable high-energy asymmetric micro-supercapacitors based on plasma reduced and nitrogen-doped graphene oxide and MoO2 nanoparticles. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 143	2 ¹ 8 ² 143	3 3 6
99	2D hierarchical yolk-shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li-S batteries. <i>Journal of Energy Chemistry</i> , 2019 , 36, 64-73	12	29
98	Two-dimensional energy materials: Opportunities and perspectives. <i>Energy Storage Materials</i> , 2019 , 22, 15-17	19.4	8
97	High mass loading Ni-decorated Co9S8 with enhanced electrochemical performance for flexible quasi-solid-state asymmetric supercapacitors. <i>Journal of Power Sources</i> , 2019 , 423, 106-114	8.9	26
96	Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9478-9485	13	74
95	Graphene aerogel derived compact films for ultrafast and high-capacity aluminum ion batteries. <i>Energy Storage Materials</i> , 2019 , 23, 664-669	19.4	31
94	Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. <i>Nano Energy</i> , 2019 , 60, 743-751	17.1	98
93	Sequential growth of hierarchical N-doped carbon-MoS2 nanocomposites with variable nanostructures. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6197-6204	13	16
92	All-Solid-State Planar Sodium-Ion Microcapacitors with Multidirectional Fast Ion Diffusion Pathways. <i>Advanced Science</i> , 2019 , 6, 1902147	13.6	23
91	Switchable Adhesion of Micropillar Adhesive on Rough Surfaces. <i>Small</i> , 2019 , 15, e1904248	11	40
90	The Synergetic Effect of Ni and Fe Bi-metal Single Atom Catalysts on Graphene for Highly Efficient Oxygen Evolution Reaction. <i>Frontiers in Materials</i> , 2019 , 6,	4	14

(2018-2019)

89	Reversible Adhesion via Light-Regulated Conformations of Rubber Chains. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 46337-46343	9.5	11
88	Single-atom nickel confined nanotube superstructure as support for catalytic wet air oxidation of acetic acid. <i>Communications Chemistry</i> , 2019 , 2,	6.3	7
87	Conducting and Lithiophilic MXene/Graphene Framework for High-Capacity, Dendrite-Free Lithium-Metal Anodes. <i>ACS Nano</i> , 2019 , 13, 14308-14318	16.7	97
86	Potassium-Ion Batteries: The Promise and Challenge of Phosphorus-Based Composites as Anode Materials for Potassium-Ion Batteries (Adv. Mater. 50/2019). <i>Advanced Materials</i> , 2019 , 31, 1970354	24	1
85	Microscale Energy-Storage Devices: The Road Towards Planar Microbatteries and Micro-Supercapacitors: From 2D to 3D Device Geometries (Adv. Mater. 50/2019). <i>Advanced Materials</i> , 2019 , 31, 1970351	24	5
84	2D hybrid interlayer of electrochemically exfoliated graphene and Co(OH)2 nanosheet as a bi-functionalized polysulfide barrier for high-performance lithiumBulfur batteries. <i>JPhys Energy</i> , 2019 , 1, 015002	4.9	4
83	2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte. <i>Energy Storage Materials</i> , 2019 , 18, 397-404	19.4	95
82	Additive-Free Nb2O5IIiO2 Hybrid Anode towards Low-Cost and Safe Lithium-Ion Batteries: A Green Electrode Material Produced in an Environmentally Friendly Process. <i>Batteries and Supercaps</i> , 2019 , 2, 160-167	5.6	4
81	Embedding Co3O4 nanoparticles into graphene nanoscrolls as anode for lithium ion batteries with superior capacity and outstanding cycling stability. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 212-217	3.6	8
80	All-MXene-Based Integrated Electrode Constructed by TiC Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries. <i>ACS Nano</i> , 2018 , 12, 2381-2388	16.7	258
79	Stretchable tandem micro-supercapacitors with high voltage output and exceptional mechanical robustness. <i>Energy Storage Materials</i> , 2018 , 13, 233-240	19.4	63
78	2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. <i>Biosensors and Bioelectronics</i> , 2018 , 107, 69-75	11.8	153
77	All-solid-state high-energy planar hybrid micro-supercapacitors based on 2D VN nanosheets and Co(OH)2 nanoflowers. <i>Npj 2D Materials and Applications</i> , 2018 , 2,	8.8	47
76	Supercapacitors. Chinese Chemical Letters, 2018 , 29, 551-552	8.1	3
75	Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. <i>Science China Materials</i> , 2018 , 61, 233-242	7.1	37
74	Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. <i>Journal of Energy Chemistry</i> , 2018 , 27, 25-42	12	95
73	All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. <i>Nano Energy</i> , 2018 , 51, 613-620	17.1	68
72	Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21747-2	21784	62

71	Electrochemically Scalable Production of Fluorine-Modified Graphene for Flexible and High-Energy Ionogel-Based Microsupercapacitors. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8198-8205	16.4	188
70	Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7992-7	79964	133
69	All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. <i>Energy Storage Materials</i> , 2018 , 10, 24-31	19.4	50
68	Simplified fabrication of high areal capacitance all-solid-state micro-supercapacitors based on graphene and MnO2 nanosheets. <i>Chinese Chemical Letters</i> , 2018 , 29, 582-586	8.1	23
67	Synthesis of mesoporous Fe3Si aerogel as a photo-thermal material for highly efficient and stable corrosive-water evaporation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23263-23269	13	17
66	All-solid-state flexible planar lithium ion micro-capacitors. <i>Energy and Environmental Science</i> , 2018 , 11, 2001-2009	35.4	121
65	2D holey cobalt sulfide nanosheets derived from metalBrganic frameworks for high-rate sodium ion batteries with superior cyclability. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 14324-14329	13	60
64	Supercapacitors: Stacked-Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for High-Rate All-Solid-State Pseudocapacitors with Enhanced Volumetric Capacitance (Adv. Mater. 3/2017). <i>Advanced Materials</i> , 2017 , 29,	24	14
63	Arbitrary-Shaped Graphene-Based Planar Sandwich Supercapacitors on One Substrate with Enhanced Flexibility and Integration. <i>ACS Nano</i> , 2017 , 11, 2171-2179	16.7	103
62	Bottom-Up Fabrication of Sulfur-Doped Graphene Films Derived from Sulfur-Annulated Nanographene for Ultrahigh Volumetric Capacitance Micro-Supercapacitors. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4506-4512	16.4	248
61	Graphene: a promising 2D material for electrochemical energy storage. <i>Science Bulletin</i> , 2017 , 62, 724-7	7410 0.6	140
60	TiC MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. <i>ACS Nano</i> , 2017 , 11, 4792-4800	16.7	412
59	Interconnected Phosphorus and Nitrogen Codoped Porous Exfoliated Carbon Nanosheets for High-Rate Supercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 17317-17325	9.5	68
58	One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-Supercapacitors with High Energy Density. <i>ACS Nano</i> , 2017 , 11, 7284-7292	16.7	251
57	High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors. <i>ACS Nano</i> , 2017 , 11, 4009-4016	16.7	83
56	Scalable Fabrication of Photochemically Reduced Graphene-Based Monolithic Micro-Supercapacitors with Superior Energy and Power Densities. <i>ACS Nano</i> , 2017 , 11, 4283-4291	16.7	152
55	Graphene-Based Linear Tandem Micro-Supercapacitors with Metal-Free Current Collectors and High-Voltage Output. <i>Advanced Materials</i> , 2017 , 29, 1703034	24	106
54	Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. <i>Nano Energy</i> , 2017 , 40, 1-8	17.1	386

53	Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. <i>Energy Storage Materials</i> , 2017 , 6, 70-97	19.4	201
52	Stacked-Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for High-Rate All-Solid-State Pseudocapacitors with Enhanced Volumetric Capacitance. <i>Advanced Materials</i> , 2017 , 29, 1602960	24	149
51	A facile strategy to fabricate carboxyl-rich carbon spheres with copper-based MOFs through coordination bond. <i>Journal of Porous Materials</i> , 2016 , 23, 1537-1545	2.4	6
50	Ultraflexible In-Plane Micro-Supercapacitors by Direct Printing of Solution-Processable Electrochemically Exfoliated Graphene. <i>Advanced Materials</i> , 2016 , 28, 2217-22	24	318
49	Recent advances in graphene-based planar micro-supercapacitors. Scientia Sinica Chimica, 2016, 46, 732	-7 <i>4</i> 64	6
48	Alternating Stacked Graphene-Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for High-Energy Micro-Supercapacitors. <i>Advanced Materials</i> , 2015 , 27, 4054-61	24	249
47	Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. <i>Energy Storage Materials</i> , 2015 , 1, 119-126	19.4	70
46	Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13927-32	16.4	239
45	Ultrathin Printable Graphene Supercapacitors with AC Line-Filtering Performance. <i>Advanced Materials</i> , 2015 , 27, 3669-75	24	197
44	Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. <i>RSC Advances</i> , 2015 , 5, 50063-50069	3.7	24
43	Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. <i>Nature Communications</i> , 2015 , 6, 8817	17.4	151
42	Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6083-91	16.4	968
41	Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. <i>Advanced Materials</i> , 2014 , 26, 4552-8	24	260
40	High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. <i>Advanced Materials</i> , 2014 , 26, 1450-5	24	378
39	Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8288	13	142
38	Synthesis of novel organic-ligand-doped sodium bis(oxalate)-borate complexes with tailored thermal stability and enhanced ion conductivity for sodium ion batteries. <i>Journal of Power Sources</i> , 2014 , 248, 77-82	8.9	22
37	Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. <i>National Science Review</i> , 2014 , 1, 277-292	10.8	249
36	Synthesis of mesoporous hexagonal boron nitride fibers with high surface area for efficient removal of organic pollutants. <i>Chemical Engineering Journal</i> , 2014 , 243, 494-499	14.7	52

35	Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16002-5	16.4	984
34	Graphene-based in-plane micro-supercapacitors with high power and energy densities. <i>Nature Communications</i> , 2013 , 4, 2487	17.4	948
33	Ultralow-temperature hydrothermal synthesis of ZnMn spinel nanocrystals: Its defect spinel of EMnO2 prepared by a soft chemical method. <i>Materials Chemistry and Physics</i> , 2013 , 138, 124-130	4.4	12
32	Correlation between topographic structures and local field emission characteristics of graphene-sheet films. <i>Carbon</i> , 2013 , 61, 507-514	10.4	16
31	Screen-Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks. <i>Advanced Energy Materials</i> , 2013 , 3, 1035-1040	21.8	194
30	Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. <i>Journal of the American Chemical Society</i> , 2012 , 134, 19532-	5 ^{16.4}	934
29	The doping of reduced graphene oxide with nitrogen and its effect on the quenching of the material photoluminescence. <i>Carbon</i> , 2012 , 50, 5286-5291	10.4	53
28	Graphene/metal oxide composite electrode materials for energy storage. <i>Nano Energy</i> , 2012 , 1, 107-13	117.1	1507
27	A LiF Nanoparticle-Modified Graphene Electrode for High-Power and High-Energy Lithium Ion Batteries. <i>Advanced Functional Materials</i> , 2012 , 22, 3290-3297	15.6	60
26	3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9082-5	16.4	1833
25	Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. <i>Advanced Materials</i> , 2012 , 24, 5130-5	24	1164
24	Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. <i>ACS Nano</i> , 2011 , 5, 5463-71	16.7	1700
23	Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. <i>ACS Nano</i> , 2010 , 4, 3187-94	16.7	2201
22	Graphene-Wrapped Fe3O4Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. <i>Chemistry of Materials</i> , 2010 , 22, 5306-5313	9.6	1660
21	High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. <i>ACS Nano</i> , 2010 , 4, 5835-42	16.7	1331
20	Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy. <i>Physical Review B</i> , 2010 , 81,	3.3	65
19	Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. <i>Nano Research</i> , 2010 , 3, 16-22	10	127
18	Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors. <i>Advanced Functional Materials</i> , 2010 , 20, 3595-3602	15.6	1033

LIST OF PUBLICATIONS

17	Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. <i>Carbon</i> , 2010 , 48, 3543-3550	10.4	83
16	Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition. <i>Advanced Materials</i> , 2009 , 21, 1756-1760	24	562
15	Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers. <i>Electrochemistry Communications</i> , 2009 , 11, 1729-1732	5.1	143
14	Hydrogen adsorption behavior of graphene above critical temperature. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 2329-2332	6.7	166
13	Synthesis of high-quality graphene with a pre-determined number of layers. <i>Carbon</i> , 2009 , 47, 493-499	10.4	584
12	Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. <i>ACS Nano</i> , 2009 , 3, 1745-52	16.7	1355
11	Crystallographic tailoring of graphene by nonmetal SiO(x) nanoparticles. <i>Journal of the American Chemical Society</i> , 2009 , 131, 13934-6	16.4	62
10	Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. <i>ACS Nano</i> , 2009 , 3, 411-7	16.7	702
9	Surface and interference coenhanced Raman scattering of graphene. ACS Nano, 2009, 3, 933-9	16.7	81
8	Hydrothermal synthesis and characterization of nanocrystalline ZnMn spinel. <i>Journal of Physics and Chemistry of Solids</i> , 2007 , 68, 1583-1590	3.9	25
7	Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. <i>Journal of Materials Chemistry A</i> ,	13	2
6	Super-aligned films of sub-1 nm Bi2O3-polyoxometalate nanowires as interlayers in lithium-sulfur batteries. <i>Science China Materials</i> ,1	7.1	6
5	Water-in-Salt Ambipolar Redox Electrolyte Extraordinarily Boosting High Pseudocapacitive Performance of Micro-supercapacitors. <i>ACS Energy Letters</i> ,1706-1711	20.1	1
4	Hard-Carbon Anodes for Sodium-Ion Batteries: Recent Status and Challenging Perspectives. Advanced Energy and Sustainability Research, 2200009	1.6	2
3	2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors. <i>Advanced Functional Materials</i> ,2202342	15.6	2
2	All 3D Printing Shape-Conformable Zinc Ion Hybrid Capacitors with Ultrahigh Areal Capacitance and Improved Cycle Life. <i>Advanced Energy Materials</i> ,2200341	21.8	2
1	Unraveling the Design Principles of Battery-Supercapacitor Hybrid Devices: From Fundamental Mechanisms to Microstructure Engineering and Challenging Perspectives. <i>Advanced Energy Materials</i> , 2200594	21.8	8