
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/806732/publications.pdf Version: 2024-02-01

SONG ZHANG

#	Article	IF	CITATIONS
1	Highâ€Speed Preparation of <111>―and <110>â€Oriented βâ€SiC Films by Laser Chemical Vapor Deposition. Journal of the American Ceramic Society, 2014, 97, 952-958.	1.9	41
2	High‧peed Epitaxial Growth of βâ€ <scp><scp>SiC</scp></scp> Film on <scp><scp>Si</scp>(111) Single Crystal by Laser Chemical Vapor Deposition. Journal of the American Ceramic Society, 2012, 95, 2782-2784.</scp>	1.9	38
3	Growth Mechanism and Defects of <111>â€Oriented βâ€SiC Films Deposited by Laser Chemical Vapor Deposition. Journal of the American Ceramic Society, 2015, 98, 236-241.	1.9	35
4	Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. Journal of Alloys and Compounds, 2018, 747, 100-108.	2.8	30
5	Effect of microstructure on mechanical, electrical and thermal properties of B4C-HfB2 composites prepared by arc melting. Journal of the European Ceramic Society, 2016, 36, 3929-3937.	2.8	26
6	Practical Design and Implementation of Cloud Computing for Power System Planning Studies. IEEE Transactions on Smart Grid, 2019, 10, 2301-2311.	6.2	26
7	Ultraâ€Fast Fabrication of <110>â€Oriented βâ€&iC Wafers by Halide <scp>CVD</scp> . Journal of the American Ceramic Society, 2016, 99, 84-88.	1.9	25
8	Microstructure and mechanical properties of B4C–HfB2–SiC ternary eutectic composites prepared by arc melting. Journal of the European Ceramic Society, 2016, 36, 959-966.	2.8	23
9	Preparation of highly oriented β-SiC bulks by halide laser chemical vapor deposition. Journal of the European Ceramic Society, 2017, 37, 509-515.	2.8	23
10	Mechanical, electrical and thermal properties of ZrC-ZrB2-SiC ternary eutectic composites prepared by arc melting. Journal of the European Ceramic Society, 2018, 38, 3759-3766.	2.8	23
11	Fast synthesis of high-quality large-area graphene by laser CVD. Applied Surface Science, 2018, 445, 204-210.	3.1	22
12	Transparent highly oriented 3C-SiC bulks by halide laser CVD. Journal of the European Ceramic Society, 2018, 38, 3057-3063.	2.8	20
13	Effect of CH4/SiCl4 ratio on the composition and microstructure of ã€^110〉-oriented β-SiC bulks by halide CVD. Journal of the European Ceramic Society, 2017, 37, 1217-1223.	2.8	18
14	A hierarchically multifunctional integrated catalyst with intimate and synergistic active sites for one-pot tandem catalysis. Inorganic Chemistry Frontiers, 2021, 8, 3463-3472.	3.0	18
15	Electrically conducting graphene/SiC(111) composite coatings by laser chemical vapor deposition. Carbon, 2018, 139, 76-84.	5.4	17
16	Laser CVD growth of graphene/SiC/Si nano-matrix heterostructure with improved electrochemical capacitance and cycle stability. Carbon, 2021, 175, 377-386.	5.4	17
17	Viromics unveils extraordinary genetic diversity of the family Closteroviridae in wild citrus. PLoS Pathogens, 2021, 17, e1009751.	2.1	17
18	Highâ€speed heteroepitaxial growth of 3Câ€SiC (111) thick films on Si (110) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2018, 101, 1048-1057.	1.9	16

#	Article	IF	CITATIONS
19	Morphology and mechanical behavior of diamond films fabricated by IH-MPCVD. RSC Advances, 2018, 8, 16061-16068.	1.7	16
20	Fineâ€grained 3C‧iC thick films prepared via hybrid laser chemical vapor deposition. Journal of the American Ceramic Society, 2019, 102, 5668-5678.	1.9	15
21	Comparison of CVD-deposited Ni and dry-blended Ni powder as sintering aids for TiN powder. Journal of the European Ceramic Society, 2014, 34, 1955-1961.	2.8	13
22	Nanoforest of 3C–SiC/graphene by laser chemical vapor deposition with high electrochemical performance. Journal of Power Sources, 2019, 444, 227308.	4.0	13
23	Epitaxial growth and electrical performance of graphene/3C–SiC films by laser CVD. Journal of Alloys and Compounds, 2020, 826, 154198.	2.8	13
24	Thickness-dependent microstructural properties of heteroepitaxial (00.1) CuFeO2 thin films on (00.1) sapphire by pulsed laser deposition. Journal of Applied Physics, 2020, 127, 065301.	1.1	13
25	Structural study of βâ€siC(001) films on Si(001) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2017, 100, 1634-1641.	1.9	12
26	Fast preparation of (111)â€oriented βâ€SiC films without carbon formation by laser chemical vapor deposition from hexamethyldisilane without H ₂ . Journal of the American Ceramic Society, 2018, 101, 1471-1478.	1.9	11
27	Structural Controlling of Highly-Oriented Polycrystal 3C-SiC Bulks via Halide CVD. Materials, 2019, 12, 390.	1.3	11
28	Elimination of double position domains (DPDs) in epitaxial ã€^111〉-3C-SiC on Si(111) by laser CVD. Applied Surface Science, 2017, 426, 662-666.	3.1	10
29	Morphological Evolution of Vertically Standing Molybdenum Disulfide Nanosheets by Chemical Vapor Deposition. Materials, 2018, 11, 631.	1.3	10
30	One-step chemical vapor deposition fabrication of Ni@NiO@graphite nanoparticles for the oxygen evolution reaction of water splitting. RSC Advances, 2022, 12, 10496-10503.	1.7	10
31	Growth of umbrella-like millimeter-scale single-crystalline graphene on liquid copper. Carbon, 2019, 150, 356-362.	5.4	9
32	Complete genome sequences of two novel genotypes of Citrus tristeza virusÂinfecting Poncirus trifoliata in China. Journal of Plant Pathology, 2020, 102, 903-907.	0.6	9
33	Morphology controlling of ã€^111〉-3C–SiC films by HMDS flow rate in LCVD. RSC Advances, 2019, 9, 2426-2430.	1.7	8
34	Synchrophasor-Based Emergency Generation Control for Area Balancing. IEEE Transactions on Smart Grid, 2019, 10, 5831-5840.	6.2	8
35	Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Applied Surface Science, 2020, 499, 143998.	3.1	8
36	Practical Adoption of Cloud Computing in Power Systems—Drivers, Challenges, Guidance, and Real-World Use Cases. IEEE Transactions on Smart Grid, 2022, 13, 2390-2411.	6.2	8

#	Article	IF	CITATIONS
37	Ultra-fast epitaxial growth of \hat{l}^2 -SiC films on $\hat{l}\pm$ (4H)-SiC using hexamethyldisilane (HMDS) at low temperature. Ceramics International, 2016, 42, 4632-4635.	2.3	7
38	Microstructure and texture of polycrystalline 3C–SiC thick films characterized via EBSD. Ceramics International, 2020, 46, 27000-27009.	2.3	7
39	Study on the Reaction Mechanism of Potassium Titanate Fibers. Integrated Ferroelectrics, 2014, 153, 156-163.	0.3	6
40	High-Speed Deposition of SiC Thick Film by Halide Precursor. Key Engineering Materials, 0, 616, 37-42.	0.4	6
41	Heteroepitaxial growth of thick 3Câ€SiC (110) films by Laser CVD. Journal of the American Ceramic Society, 2019, 102, 4480-4491.	1.9	6
42	Mechanical properties of high-crystalline diamond films grown via laser MPCVD. Diamond and Related Materials, 2020, 109, 108094.	1.8	6
43	Growth mechanism of porous 3C–SiC films prepared via laser chemical vapor deposition. Ceramics International, 2020, 46, 16518-16523.	2.3	6
44	Complete genome sequences and recombination analysis of three divergent Satsuma dwarf virus isolates. Tropical Plant Pathology, 2021, 46, 26-30.	0.8	6
45	Synthesis of large size uniform single-crystalline trilayer graphene on premelting copper. Carbon, 2017, 122, 352-360.	5.4	5
46	Structural investigation of Al ₂ O ₃ coatings by <scp>PECVD</scp> with a high deposition rate. International Journal of Applied Ceramic Technology, 2019, 16, 1356-1363.	1.1	5
47	Effect of hydrogen flow on microtwins in 3C–SiC epitaxial films by laser chemical vapor deposition. Thin Solid Films, 2019, 678, 8-15.	0.8	5
48	A high-throughput synthesis of large-sized single-crystal hexagonal boron nitride on a Cu–Ni gradient enclosure. RSC Advances, 2020, 10, 16088-16093.	1.7	5
49	Fabrication of porous SiC nanostructured coatings on C/C composite by laser chemical vapor deposition for improving the thermal shock resistance. Ceramics International, 2022, , .	2.3	5
50	Thickness dependence of structure and superconductivity of the SmBa ₂ Cu ₃ O ₇ film by laser CVD. RSC Advances, 2017, 7, 56166-56172.	1.7	4
51	Epitaxial growth of 3C–SiC on Si(111) and (001) by laser CVD. Journal of the American Ceramic Society, 2018, 101, 3850-3856.	1.9	4
52	Epitaxial growth of 3C-SiC (111) on Si via laser CVD carbonization. Journal of Asian Ceramic Societies, 2019, 7, 312-320.	1.0	4
53	Microstructure and Oxidation Behavior of Metal V Films Deposited by Magnetron Sputtering. Materials, 2019, 12, 425.	1.3	4
54	Epitaxial Growth of SiC Films on 4H-SiC Substrate by High-Frequency Induction-Heated Halide Chemical Vapor Deposition. Coatings, 2022, 12, 329.	1.2	4

#	Article	IF	CITATIONS
55	Effects of C/Si Ratio on the Structure of β-SiC Film by Halide CVD. Key Engineering Materials, 0, 616, 227-231.	0.4	3
56	Catalytic Decomposition of Nitric Oxide by LaCoO3 Nano-particles Prepared by Rotary CVD. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 368-374.	0.4	3
57	Fabrication of an ultraâ€thickâ€oriented 3Câ€SiC coating on the inner surface of a graphite tube by highâ€frequency inductionâ€heated halide chemical vapor deposition. International Journal of Applied Ceramic Technology, 2019, 16, 1004-1011.	1.1	3
58	Microstructure and Oxidation Resistance of V Thin Films Deposited by Magnetron Sputtering at Room Temperature. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 879-884.	0.4	3
59	In Situ Doping of Nitrogen in <110>-Oriented Bulk 3C-SiC by Halide Laser Chemical Vapour Deposition. Materials, 2020, 13, 410.	1.3	3
60	Effect of TZP nanoparticles synthesized by RCVD on mechanical properties of ZTA composites sintered by SPS. Journal of the European Ceramic Society, 2022, 42, 3550-3558.	2.8	3
61	Synthesis of Al 2 O 3 coatings on Ti(C, N)â€based cermets by microwave plasma CVD using Al(acac) 3. International Journal of Applied Ceramic Technology, 2019, 16, 2265-2272.	1.1	1
62	Influence of oxygen partial pressure on SmBa2Cu3O7-Î′ film deposited by laser chemical vapor deposition. Journal of Asian Ceramic Societies, 2021, 9, 197-207.	1.0	1
63	Phase-Selective Synthesis of Mo–Ta–C Ternary Nanosheets by Precisely Tailoring Mo/Ta Atom Ratio on Liquid Copper. Nanomaterials, 2022, 12, 1446.	1.9	1
64	High-throughput growth of HfO ₂ films using temperature-gradient laser chemical vapor deposition. RSC Advances, 2022, 12, 15555-15563.	1.7	1
65	Structural study of epitaxial NdBa2Cu3O7â^'x films by laser chemical vapor deposition. RSC Advances, 2018, 8, 19811-19817.	1.7	0
66	Elimination of Voids at Interface of β-SiC Films and Si Substrate by Laser CVD. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 356-362.	0.4	0
67	Synthesis of transfer-free graphene films on dielectric substrates with controllable thickness via an in-situ co-deposition method for electrochromic devices. Ceramics International, 2022, , .	2.3	0
68	Growth of self-aligned nonlayered TaC nanosheets on liquid copper by a solid phase diffusion strategy. Materials Today Nano, 2022, , 100237.	2.3	0