Xin-Heng Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8067286/publications.pdf

Version: 2024-02-01

18 papers	243 citations	1163117 8 h-index	940533 16 g-index
P - P 0 2 0			8
18 all docs	18 docs citations	18 times ranked	311 citing authors

#	Article	IF	CITATIONS
1	Roomâ€Temperature Nickelâ€Catalysed Suzuki–Miyaura Reactions of Aryl Sulfonates/Halides with Arylboronic Acids. European Journal of Organic Chemistry, 2011, 2011, 1467-1471.	2.4	61
2	Ni ^{II} –(Ïfâ€Aryl) Complex Catalyzed Suzuki Reaction of Aryl Tosylates with Arylboronic Acids. European Journal of Organic Chemistry, 2010, 2010, 2457-2460.	2.4	49
3	Nickel-catalyzed cross-coupling of carboxylic anhydrides with arylboronic acids. RSC Advances, 2014, 4, 53885-53890.	3.6	31
4	Ni(ii) source as a pre-catalyst for the cross-coupling of benzylic pivalates with arylboronic acids: facile access to tri- and diarylmethanes. RSC Advances, 2015, 5, 15338-15340.	3.6	22
5	A–D–C–D–A type non-fullerene acceptors based on the benzotriazole (BTA) unfused core for organic solar cells. New Journal of Chemistry, 2021, 45, 12802-12807.	2.8	12
6	In-situ pulse electropolymerization of pyrrole on single-walled carbon nanotubes for thermoelectric composite materials. Chemical Engineering Journal, 2022, 443, 136536.	12.7	12
7	Nickel-catalyzed N-arylation of benzophenone hydrazone with bromoarenes. RSC Advances, 2014, 4, 3364-3367.	3.6	11
8	An Easy Route to <i>N</i> , <i>N</i> ê€Diarylhydrazines by Cuâ€Catalyzed Arylation of Pyridineâ€2â€carbaldehyde Hydrazones with Aryl Halides. European Journal of Organic Chemistry, 2013, 2013, 862-867.	2.4	9
9	Full-Electrochemical Construction of High-Performance Polypyrrole/Tellurium Thermoelectrical Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10815-10824.	8.0	9
10	Homo-Coupling of Terminal Alkynes Using a Simple, Cheap Ni(dppe)Cl ₂ /Ag ₂ O Catalyst System. Synthetic Communications, 2015, 45, 824-830.	2.1	7
11	Regioselectively switchable alkyne cyclotrimerization catalyzed by a Ni(<scp>ii</scp>)/bidentate P-ligand/Zn system with Znl ₂ as an additive. Organic Chemistry Frontiers, 2022, 9, 2357-2367.	4.5	5
12	Fineâ€Tuning Active Layer Morphology via Modification of Both Side Chains and Terminal Groups toward Highâ€Performance Organic Solar Cells. Energy Technology, 2022, 10, .	3.8	4
13	Terminal groups play an important role in enhancing the performance of organic solar cells based on non-fused electron acceptors. New Journal of Chemistry, 2022, 46, 10048-10054.	2.8	4
14	<i>t</i> -BuOK-catalysed alkylation of fluorene with alcohols: a highly green route to 9-monoalkylfluorene derivatives. RSC Advances, 2019, 9, 35913-35916.	3.6	3
15	Pseudo ⟨i⟩in situ⟨/i⟩ construction of high-performance thermoelectric composites with a dioxothiopyrone-based D–A polymer coating on SWCNTs. RSC Advances, 2021, 11, 8664-8673.	3.6	2
16	Organic–inorganic hybrid perovskite for low-cost and high-performance xerographic photoreceptors. RSC Advances, 2021, 11, 21754-21759.	3.6	1
17	High performance achieved <i>via</i> core engineering and side-chain engineering in organic solar cells based on the penta-fused-ring acceptor. Journal of Materials Chemistry C, 2022, 10, 7724-7730.	5.5	1
18	Nickel-catalyzed synthesis of 9-monoalkylated fluorenes from 9-fluorenone hydrazone and alcohols. Synthetic Communications, 0, , 1-8.	2.1	0