Nandita Dasgupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8067251/publications.pdf

Version: 2024-02-01

230014 190340 2,924 60 27 53 citations g-index h-index papers 60 60 60 3520 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nanoparticles and nanofluids: Characteristics and behavior aspects. , 2022, , 41-71.		2
2	A sustainable solution for enhanced food packaging via a scienceâ€based composite blend of naturalâ€sourced chitosan and microbial extracellular polymeric substances. Journal of Food Processing and Preservation, 2021, 45, .	0.9	12
3	Biogenic Preparation and Characterization of ZnO Nanoparticles from Natural Polysaccharide Azadirachta indica .L. (neem gum) and its Clinical Implications. Journal of Cluster Science, 2021, 32, 983-993.	1.7	21
4	Biological Compound Capping of Silver Nanoparticle with the Seed Extracts of Blackcumin (Nigella) Tj ETQq0 0 0 Inorganic and Organometallic Polymers and Materials, 2021, 31, 624-635.	rgBT /Ove 1.9	rlock 10 Tf 5 35
5	Strong and nonspecific synergistic antibacterial/antibiofilm impact of nano-silver biosynthesized and decorated with active ingredients of Oscimum basilicum L 3 Biotech, 2021, 11, 153.	1.1	4
6	Future applications of electrospun nanofibers in pressure driven water treatment: A brief review and research update. Journal of Environmental Chemical Engineering, 2021, 9, 105107.	3.3	54
7	Whey protein based electrosprayed nanospheres for encapsulation and controlled release of bioactive compounds from Tinospora cordifolia extract. Innovative Food Science and Emerging Technologies, 2021, 69, 102671.	2.7	11
8	Silybin B and Cianidanol Inhibit Mpro and Spike Protein of SARS-CoV-2: Evidence from in silico Molecular Docking Studies. Current Pharmaceutical Design, 2021, 27, 3476-3489.	0.9	12
9	<i>In Silico</i> Studies Reveal Antiviral Effects of Traditional Indian Spices on COVID-19. Current Pharmaceutical Design, 2021, 27, 3462-3475.	0.9	12
10	Inhibitory effect of clove oil nanoemulsion on fumonisin isolated from maize kernels. LWT - Food Science and Technology, 2020, 134, 110237.	2.5	15
11	Involvement of Bcl-2 Activation and G1 Cell Cycle Arrest in Colon Cancer Cells Induced by Titanium Dioxide Nanoparticles Synthesized by Microwave-Assisted Hybrid Approach. Frontiers in Bioengineering and Biotechnology, 2020, 8, 606.	2.0	24
12	Aquatic nanotoxicology: impact of carbon nanomaterials on algal flora. Energy, Ecology and Environment, 2020, 5, 240-252.	1.9	22
13	Methods for nanoemulsion and nanoencapsulation of food bioactives. Environmental Chemistry Letters, 2019, 17, 1471-1483.	8.3	25
14	Assessment of Occupational Health Hazards Due to Particulate Matter Originated from Spices. International Journal of Environmental Research and Public Health, 2019, 16, 1519.	1.2	9
15	Nanoemulsions in food: market demand. Environmental Chemistry Letters, 2019, 17, 1003-1009.	8.3	59
16	Silver nanoparticles engineered by thermal co-reduction approach induces liver damage in Wistar rats: acute and sub-chronic toxicity analysis. 3 Biotech, 2019, 9, 125.	1.1	14
17	Food-grade nanoencapsulation of vitamins. Environmental Chemistry Letters, 2019, 17, 991-1002.	8.3	18
18	Preparation and Evaluation of the ZnO NP–Ampicillin/Sulbactam Nanoantibiotic: Optimization of Formulation Variables Using RSM Coupled GA Method and Antibacterial Activities. Biomolecules, 2019, 9, 764.	1.8	11

#	Article	IF	Citations
19	Nanoemulsion ingredients and components. Environmental Chemistry Letters, 2019, 17, 917-928.	8.3	29
20	Toxicity and regulations of food nanomaterials. Environmental Chemistry Letters, 2019, 17, 929-944.	8.3	33
21	Adsorptive removal of arsenic from real sample of polluted water using magnetic GO/ZnFe2O4 nanocomposite and ZnFe2O4 nanospinel. International Journal of Environmental Science and Technology, 2019, 16, 7455-7466.	1.8	23
22	Nanotechnology in Food Sector. Environmental Chemistry for A Sustainable World, 2018, , 1-18.	0.3	8
23	Food-Grade Nanoemulsions: Review on the Possible Market. Environmental Chemistry for A Sustainable World, 2018, , 123-128.	0.3	3
24	Nanotechnology in Food Packaging. Environmental Chemistry for A Sustainable World, 2018, , 129-150.	0.3	2
25	Food Nanoemulsions: Stability, Benefits and Applications. Environmental Chemistry for A Sustainable World, 2018, , 19-48.	0.3	8
26	Fabrication of Nanoemulsion: A Brief Review. Environmental Chemistry for A Sustainable World, 2018, , 49-62.	0.3	3
27	Nano-Food Toxicity and Regulations. Environmental Chemistry for A Sustainable World, 2018, , 151-179.	0.3	5
28	Research Updates on Different Vitamins Based Nanoemulsions and Characterization of Nanoemulsions. Environmental Chemistry for A Sustainable World, 2018, , 105-122.	0.3	3
29	Ingredients and Components of Nanoemulsions. Environmental Chemistry for A Sustainable World, 2018, , 63-82.	0.3	5
30	Food Engineering for Developing Food-Grade Nanoemulsions. Environmental Chemistry for A Sustainable World, 2018, , 83-103.	0.3	3
31	An Introduction to Food Grade Nanoemulsions. Environmental Chemistry for A Sustainable World, 2018, , .	0.3	18
32	Graphene oxide MgFe2O4 nanocomposites for $Cr(VI)$ remediation: a comparative modeling study. Nanotechnology for Environmental Engineering, 2018, 3, 1.	2.0	8
33	Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: Its potential anti-cancerous activity in human alveolar carcinoma cells. Colloids and Surfaces B: Biointerfaces, 2018, 166, 349-357.	2.5	51
34	Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition, 2018, 58, 297-317.	5.4	269
35	Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications. Materials Science and Engineering C, 2018, 93, 191-205.	3.8	59
36	Thermal Co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Chemico-Biological Interactions, 2018, 295, 109-118.	1.7	42

#	Article	IF	CITATIONS
37	Titanium dioxide nanoparticle–protein interaction explained by docking approach. International Journal of Nanomedicine, 2018, Volume 13, 47-50.	3.3	22
38	A Novel Approach to Evaluate Titanium Dioxide Nanoparticle–Protein Interaction Through Docking: An Insight into Mechanism of Action. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2017, 87, 937-943.	0.4	38
39	Microwave Blanching: An Emerging Trend in Food Engineering and its Effects on <i>Capsicum annuum</i> L. Journal of Food Process Engineering, 2017, 40, e12411.	1.5	29
40	Applications of nanotechnology in agriculture and water quality management. Environmental Chemistry Letters, 2017, 15, 591-605.	8.3	168
41	Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrasonics Sonochemistry, 2017, 39, 623-635.	3.8	112
42	Nanotechnology towards prevention of anaemia and osteoporosis: from concept to market. Biotechnology and Biotechnological Equipment, 2017, 31, 863-879.	0.5	47
43	Nano-zirconia – Evaluation of its antioxidant and anticancer activity. Journal of Photochemistry and Photobiology B: Biology, 2017, 170, 125-133.	1.7	115
44	Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2017, 166, 252-258.	1.7	70
45	Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. Journal of Photochemistry and Photobiology B: Biology, 2017, 166, 158-168.	1.7	129
46	Assessment on the antibacterial activity of nanosized silica derived from hypercoordinated silicon(<scp>iv</scp>) precursors. RSC Advances, 2016, 6, 66394-66406.	1.7	35
47	Bovine serum albumin interacts with silver nanoparticles with a "side-on―or "end on―conformation. Chemico-Biological Interactions, 2016, 253, 100-111.	1.7	63
48	Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environmental Science and Pollution Research, 2016, 23, 12287-12302.	2.7	44
49	Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environmental Chemistry Letters, 2016, 14, 477-485.	8.3	64
50	Nanoagriculture and Water Quality Management. Sustainable Agriculture Reviews, 2016, , 1-42.	0.6	16
51	A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 472-481.	1.7	58
52	Blood coagulating effect of marigold (Tagetes erecta L.) leaf and its bioactive compounds. Oriental Pharmacy and Experimental Medicine, 2016 , 16 , 67 - 75 .	1.2	8
53	Fabrication of Food Grade Vitamin E Nanoemulsion by Low Energy Approach, Characterization and Its Application. International Journal of Food Properties, 2016, 19, 700-708.	1.3	138
54	Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environmental Science and Pollution Research, 2016, 23, 4149-4163.	2.7	73

#	Article	IF	CITATIONS
55	Solanum nigrum Leaf: Natural Food Against Diabetes and its Bioactive Compounds. Research Journal of Medicinal Plant, 2016, 10, 181-193.	0.3	11
56	Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Advances, 2015, 5, 26727-26733.	1.7	110
57	Nanotechnology in agro-food: From field to plate. Food Research International, 2015, 69, 381-400.	2.9	325
58	Extraction-based blood coagulation activity of marigold leaf: a comparative study. Comparative Clinical Pathology, 2014, 23, 1715-1718.	0.3	7
59	Nanoscience and nanotechnologies in food industries: opportunities and research trends. Journal of Nanoparticle Research, 2014, 16 , 1 .	0.8	231
60	Nanotechnology for tissue engineering: Need, techniques andÂapplications. Journal of Pharmacy Research, 2013, 7, 200-204.	0.4	79