Ji Woong Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8067099/publications.pdf

Version: 2024-02-01

331259 214527 2,726 47 21 47 h-index citations g-index papers 47 47 47 3925 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	LPA Receptors: Subtypes and Biological Actions. Annual Review of Pharmacology and Toxicology, 2010, 50, 157-186.	4.2	724
2	FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P ₁) modulation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 751-756.	3.3	558
3	Lysophospholipids and their receptors in the central nervous system. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 20-32.	1.2	209
4	Biological roles of lysophospholipid receptors revealed by genetic null mice: An update. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 531-539.	1.2	113
5	Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. Journal of Neuroinflammation, 2018, 15, 284.	3.1	86
6	Neuroprotective Effect of 6-Paradol in Focal Cerebral Ischemia Involves the Attenuation of Neuroinflammatory Responses in Activated Microglia. PLoS ONE, 2015, 10, e0120203.	1.1	78
7	Activation of Glucagon-Like Peptide-1 Receptor Promotes Neuroprotection in Experimental Autoimmune Encephalomyelitis by Reducing Neuroinflammatory Responses. Molecular Neurobiology, 2018, 55, 3007-3020.	1.9	73
8	Matrix Metalloproteinase-8 Plays a Pivotal Role in Neuroinflammation by Modulating TNF-α Activation. Journal of Immunology, 2014, 193, 2384-2393.	0.4	63
9	The complex morphology of reactive astrocytes controlled by fibroblast growth factor signaling. Glia, 2014, 62, 1328-1344.	2.5	60
10	Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS ONE, 2017, 12, e0171479.	1.1	56
11	Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (Fingolimod) in multiple sclerosis. Archives of Pharmacal Research, 2010, 33, 1567-1574.	2.7	54
12	Identification of Sphingosine 1-Phosphate Receptor Subtype 1 (S1P1) as a Pathogenic Factor in Transient Focal Cerebral Ischemia. Molecular Neurobiology, 2018, 55, 2320-2332.	1.9	53
13	S1P2 contributes to microglial activation and M1 polarization following cerebral ischemia through ERK1/2 and JNK. Scientific Reports, 2019, 9, 12106.	1.6	50
14	Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling. Mediators of Inflammation, 2015, 2015, 1-12.	1.4	40
15	Uridine Protects Cortical Neurons from Glucose Deprivation-Induced Death: Possible Role of Uridine Phosphorylase. Journal of Neurotrauma, 2008, 25, 695-707.	1.7	35
16	S1P ₁ Regulates M1/M2 Polarization toward Brain Injury after Transient Focal Cerebral Ischemia. Biomolecules and Therapeutics, 2019, 27, 522-529.	1.1	32
17	Lysophosphatidic acid receptor 1 (LPA1) plays critical roles in microglial activation and brain damage after transient focal cerebral ischemia. Journal of Neuroinflammation, 2019, 16, 170.	3.1	31
18	Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis. Biomolecules and Therapeutics, 2019, 27, 152-159.	1.1	29

#	Article	IF	CITATIONS
19	Matrix Metalloproteinase-8 is a Novel Pathogenetic Factor in Focal Cerebral Ischemia. Molecular Neurobiology, 2016, 53, 231-239.	1.9	28
20	Identifying lysophosphatidic acid receptor subtype 1 (LPA1) as a novel factor to modulate microglial activation and their TNF- $\hat{l}\pm$ production by activating ERK1/2. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1237-1245.	1.2	27
21	Mentha arvensis Essential Oil Exerts Anti-Inflammatory in LPS-Stimulated Inflammatory Responses via Inhibition of ERK/NF-κB Signaling Pathway and Anti-Atopic Dermatitis-like Effects in 2,4-Dinitrochlorobezene-Induced BALB/c Mice. Antioxidants, 2021, 10, 1941.	2.2	26
22	Lysophosphatidic Acid Receptor 5 Contributes to Imiquimod-Induced Psoriasis-Like Lesions through NLRP3 Inflammasome Activation in Macrophages. Cells, 2020, 9, 1753.	1.8	25
23	Sphingosine 1-Phosphate Receptor 4 Promotes Nonalcoholic Steatohepatitis by Activating NLRP3 Inflammasome. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 925-947.	2.3	22
24	Control of JNK for an activation of NADPH oxidase in LPS-stimulated BV2 microglia. Archives of Pharmacal Research, 2012, 35, 709-715.	2.7	19
25	Danshensu attenuates scopolamine and amyloid- $\hat{\Gamma}^2$ -induced cognitive impairments through the activation of PKA-CREB signaling in mice. Neurochemistry International, 2019, 131, 104537.	1.9	19
26	Glucose deprivation increases hydrogen peroxide level in immunostimulated rat primary astrocytes. Journal of Neuroscience Research, 2004, 75, 722-731.	1.3	18
27	Lysophosphatidic Acid Receptor 5 Plays a Pathogenic Role in Brain Damage after Focal Cerebral Ischemia by Modulating Neuroinflammatory Responses. Cells, 2020, 9, 1446.	1.8	17
28	Uridine prevents the glucose deprivation-induced death of immunostimulated astrocytes via the action of uridine phosphorylase. Neuroscience Research, 2006, 56, 111-118.	1.0	16
29	Sphingosine 1-Phosphate Receptors in Cerebral Ischemia. NeuroMolecular Medicine, 2021, 23, 211-223.	1.8	14
30	Regulation of neuroinflammation by matrix metalloproteinase-8 inhibitor derivatives in activated microglia and astrocytes. Oncotarget, 2017, 8, 78677-78690.	0.8	14
31	Oleanolic Acid Provides Neuroprotection against Ischemic Stroke through the Inhibition of Microglial Activation and NLRP3 Inflammasome Activation. Biomolecules and Therapeutics, 2022, 30, 55-63.	1.1	14
32	NLRP3 Inflammasome Activation Is Involved in LPA1-Mediated Brain Injury after Transient Focal Cerebral Ischemia. International Journal of Molecular Sciences, 2020, 21, 8595.	1.8	12
33	Proteinase 3 Induces Neuronal Cell Death Through Microglial Activation. Neurochemical Research, 2015, 40, 2242-2251.	1.6	11
34	Dracocephalum moldavica attenuates scopolamine-induced cognitive impairment through activation of hippocampal ERK-CREB signaling in mice. Journal of Ethnopharmacology, 2020, 253, 112651 .	2.0	11
35	Potential Therapeutic Approaches through Modulating the Autophagy Process for Skin Barrier Dysfunction. International Journal of Molecular Sciences, 2021, 22, 7869.	1.8	11
36	Adenosine and purine nucleosides prevent the disruption of mitochondrial transmembrane potential by peroxynitrite in rat primary astrocytes. Archives of Pharmacal Research, 2005, 28, 810-815.	2.7	10

#	Article	IF	CITATIONS
37	Brain energy metabolism and multiple sclerosis: progress and prospects. Archives of Pharmacal Research, 2020, 43, 1017-1030.	2.7	10
38	Akt and calcium-permeable AMPA receptor are involved in the effect of pinoresinol on amyloid \hat{l}^2 -induced synaptic plasticity and memory deficits. Biochemical Pharmacology, 2021, 184, 114366.	2.0	10
39	BMS-986020, a Specific LPA1 Antagonist, Provides Neuroprotection against Ischemic Stroke in Mice. Antioxidants, 2020, 9, 1097.	2.2	9
40	Role of Nitric Oxide and Protein S-Nitrosylation in Ischemia-Reperfusion Injury. Antioxidants, 2022, 11, 57.	2.2	9
41	S1P/S1P2 Signaling Axis Regulates Both NLRP3 Upregulation and NLRP3 Inflammasome Activation in Macrophages Primed with Lipopolysaccharide. Antioxidants, 2021, 10, 1706.	2.2	8
42	Roles of GABAA receptor α5 subunit on locomotion and working memory in transient forebrain ischemia in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 102, 109962.	2.5	6
43	REDD1 Is Involved in Amyloid \hat{l}^2 -Induced Synaptic Dysfunction and Memory Impairment. International Journal of Molecular Sciences, 2020, 21, 9482.	1.8	5
44	Receptor for Advanced Glycation End Products Is Involved in LPA5-Mediated Brain Damage after a Transient Ischemic Stroke. Life, 2021, 11, 80.	1.1	4
45	Inhibition of LPA5 Activity Provides Long-Term Neuroprotection in Mice with Brain Ischemic Stroke. Biomolecules and Therapeutics, 2020, 28, 512-518.	1.1	3
46	Molecular Interactions between Two LMP2A PY Motifs of EBV and WW Domains of E3 Ubiquitin Ligase AIP4. Life, 2021, 11, 379.	1.1	2
47	Role of extracellular signal-regulated kinase in rubrofusarin-enhanced cognitive functions and neurite outgrowth. Biomedicine and Pharmacotherapy, 2022, 147, 112663.	2.5	2