Paulina Nowicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8066647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytochemical compounds and biological effects of Actinidia fruits. Journal of Functional Foods, 2017, 30, 194-202.	3.4	115
2	Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. Journal of Functional Foods, 2018, 48, 632-642.	3.4	86
3	Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants, 2019, 8, 618.	5.1	66
4	Influence of Osmodehydration Pretreatment and Combined Drying Method on the Bioactive Potential of Sour Cherry Fruits. Food and Bioprocess Technology, 2015, 8, 824-836.	4.7	48
5	Antidiabetic, Anticholinesterase and Antioxidant Activity vs. Terpenoids and Phenolic Compounds in Selected New Cultivars and Hybrids of Artichoke Cynara scolymus L. Molecules, 2019, 24, 1222.	3.8	41
6	Chemical Composition, Antioxidant Capacity, and Sensory Quality of Dried Sour Cherry Fruits pre-Dehydrated in Fruit Concentrates. Food and Bioprocess Technology, 2015, 8, 2076-2095.	4.7	31
7	Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. Journal of Functional Foods, 2019, 56, 353-363.	3.4	29
8	The influence of physical properties of selected plant materials on the process of osmotic dehydration. LWT - Food Science and Technology, 2018, 91, 588-594.	5.2	28
9	Influence of different drying methods on the quality of Japanese quince fruit. LWT - Food Science and Technology, 2019, 114, 108416.	5.2	26
10	The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Food Chemistry, 2020, 323, 126830.	8.2	25
11	ABTS On-Line Antioxidant, α-Amylase, α-Glucosidase, Pancreatic Lipase, Acetyl- and Butyrylcholinesterase Inhibition Activity of Chaenomeles Fruits Determined by Polyphenols and other Chemical Compounds. Antioxidants, 2020, 9, 60.	5.1	24
12	The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution. Molecules, 2017, 22, 2246.	3.8	22
13	Osmotic Dehydration as a Pretreatment Modulating the Physicochemical and Biological Properties of the Japanese Quince Fruit Dried by the Convective and Vacuum-Microwave Method. Food and Bioprocess Technology, 2020, 13, 1801-1816.	4.7	19
14	The Effect of Selected Fruit Juice Concentrates Used as Osmotic Agents on the Drying Kinetics and Chemical Properties of Vacuum-Microwave Drying of Pumpkin. Journal of Food Quality, 2018, 2018, 1-11.	2.6	18
15	The impact of the osmotic dehydration process and its parameters on the mass transfer and quality of dried apples. Drying Technology, 2021, 39, 1074-1086.	3.1	17
16	Comprehensive characterization of Chaenomeles seeds as a potential source of nutritional and biologically active compounds. Journal of Food Composition and Analysis, 2021, 102, 104065.	3.9	8
17	Physicochemical characterization and biological potential of Japanese quince polyphenol extract treated by different drying techniques. LWT - Food Science and Technology, 2021, 152, 112247.	5.2	8