
Philip S Clifford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8066618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive hyperaemia augments local heatâ€induced skin hyperaemia. Experimental Physiology, 2022, 107, 383-389.	0.9	2
2	Spectral Changes in Skin Blood Flow Do Not Reflect Pressure Manipulations. FASEB Journal, 2022, 36, .	0.2	0
3	Central and Peripheral Postexercise Blood Pressure and Vascular Responses in Young Adults with Obesity. Medicine and Science in Sports and Exercise, 2021, 53, 994-1002.	0.2	5
4	Leveraging a collaborative consortium model of mentee/mentorÂtraining to foster career progression of underrepresented postdoctoral researchers and promote institutional diversity and inclusion. PLoS ONE, 2020, 15, e0238518.	1.1	12
5	Biobusiness consulting to prepare scientists for industry careers. Nature Biotechnology, 2019, 37, 821-825.	9.4	1
6	Preserved ability to blunt sympatheticallyâ€mediated vasoconstriction in exercising skeletal muscle of young obese humans. Physiological Reports, 2019, 7, e14068.	0.7	3
7	Arteriolar vasodilation involves actin depolymerization. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H423-H428.	1.5	4
8	Endothelium Mediated Dilation Does Not Blunt α 1 â€adrenergic Vasoconstriction in First Order Arterioles. FASEB Journal, 2018, 32, 726.5.	0.2	0
9	Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. , 2017, 8, 103-151.		31
10	The future of graduate and postdoctoral training in the biosciences. ELife, 2017, 6, .	2.8	47
11	Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles. Journal of Physiology, 2016, 594, 7027-7047.	1.3	49
12	Small Artery Elastin Distribution and Architecture—Focus on Three Dimensional Organization. Microcirculation, 2016, 23, 614-620.	1.0	14
13	Brief serotonin exposure initiates arteriolar inward remodeling processes in vivo that involve transglutaminase activation and actin cytoskeleton reorganization. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H188-H198.	1.5	11
14	Positional differences in reactive hyperemia provide insight into initial phase of exercise hyperemia. Journal of Applied Physiology, 2015, 119, 569-575.	1.2	20
15	Putting PhDs to Work: Career Planning for Today's Scientist. CBE Life Sciences Education, 2014, 13, 49-53.	1.1	29
16	Development of the elastin network in the walls of resistance arteries from neonatal and adult rats. FASEB Journal, 2013, 27, 679.8.	0.2	0
17	An individual development plan will help you get where you want to go. Physiologist, 2013, 56, 43-4.	0.0	9
18	Ageâ€Related Changes in the Expression of Elastin in Small cerebral and Mesenteric Arteries. FASEB Journal, 2012, 26, 861.4.	0.2	0

#	Article	IF	CITATIONS
19	Local control of blood flow. American Journal of Physiology - Advances in Physiology Education, 2011, 35, 5-15.	0.8	76
20	Spatial Distribution and Mechanical Function of Elastin in Resistance Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2889-2896.	1.1	68
21	Development of an Image-Based System for Measurement of Membrane Potential, Intracellular Ca2+ and Contraction in Arteriolar Smooth Muscle Cells. Microcirculation, 2010, 17, 629-640.	1.0	6
22	Limb position affects magnitude of reactive hyperemia. FASEB Journal, 2010, 24, 804.12.	0.2	1
23	How the National Postdoctoral Association Can Help You to Maximize Your Postdoc Experience Biology of Reproduction, 2010, 83, 45-45.	1.2	Ο
24	Differential effects of collagenase and elastase on arteriolar vasomotor responses. FASEB Journal, 2009, 23, 951.5.	0.2	0
25	Non ―adrenergic receptor mediated tonic vasoconstriction in skeletal muscle does not change with age. FASEB Journal, 2009, 23, 787.11.	0.2	Ο
26	Tripartite function of ATP in vascular signalling. Journal of Physiology, 2008, 586, 4783-4784.	1.3	2
27	Rapid Vascular Responses to Muscle Contraction. Exercise and Sport Sciences Reviews, 2008, 36, 25-29.	1.6	38
28	α-Adrenergic receptor responsiveness is preserved during prolonged exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H392-H398.	1.5	3
29	Skeletal muscle vasodilatation at the onset of exercise. Journal of Physiology, 2007, 583, 825-833.	1.3	90
30	Feedforward vasodilatation at the onset of exercise. Journal of Physiology, 2007, 583, 811-811.	1.3	5
31	Isoflurane abolishes purinergic receptor mediated restraint of skeletal muscle blood flow. FASEB Journal, 2007, 21, A886.	0.2	0
32	α-Adrenergic receptor-mediated restraint of skeletal muscle blood flow during prolonged exercise. Journal of Applied Physiology, 2006, 100, 1563-1568.	1.2	6
33	Frequency and pattern dependence of adrenergic and purinergic vasoconstriction in rat skeletal muscle arteries. Experimental Physiology, 2006, 91, 1051-1058.	0.9	6
34	Mechanical compression elicits vasodilatation in rat skeletal muscle feed arteries. Journal of Physiology, 2006, 572, 561-567.	1.3	112
35	Muscle blood flow response to contraction: influence of venous pressure. Journal of Applied Physiology, 2005, 98, 72-76.	1.2	47
36	Elevated temperature decreases sensitivity of P2X purinergic receptors in skeletal muscle arteries. Journal of Applied Physiology, 2005, 99, 995-998.	1.2	26

#	Article	IF	CITATIONS
37	Neuropeptide Y1receptor vasoconstriction in exercising canine skeletal muscles. Journal of Applied Physiology, 2005, 99, 2115-2120.	1.2	22
38	Blood flow response to muscle contractions is more closely related to metabolic rate than contractile work. Journal of Applied Physiology, 2005, 98, 2096-2100.	1.2	29
39	Role of Nitric Oxide and α-Adrenergic Receptor Responsiveness in Exercising Skeletal Muscle. Journal of Applied Physiology, 2005, 98, 1584-1585.	1.2	0
40	Acidosis attenuates P2X purinergic vasoconstriction in skeletal muscle arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H129-H132.	1.5	19
41	Experimentally induced pain perception is acutely reduced by aerobic exercise in people with chronic low back pain. Journal of Rehabilitation Research and Development, 2005, 42, 183.	1.6	90
42	Thermal Pain Perception After Aerobic Exercise. Archives of Physical Medicine and Rehabilitation, 2005, 86, 1019-1023.	0.5	35
43	Counterpoint: The muscle pump is not an important determinant of muscle blood flow during exercise. Journal of Applied Physiology, 2005, 99, 372-4; discussion 374-5.	1.2	9
44	Do P2X purinergic receptors regulate skeletal muscle blood flow during exercise?. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H633-H639.	1.5	24
45	Vasoconstriction in exercising skeletal muscles: a potential role for neuropeptide Y?. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H144-H149.	1.5	23
46	Vasodilatory mechanisms in contracting skeletal muscle. Journal of Applied Physiology, 2004, 97, 393-403.	1.2	348
47	Vasodilatation is obligatory for contraction-induced hyperaemia in canine skeletal muscle. Journal of Physiology, 2004, 557, 1013-1020.	1.3	58
48	Tracheal tone and the role of ionotropic glutamate receptors in the nucleus ambiguus. Brain Research, 2004, 1021, 54-62.	1.1	5
49	Role of nitric oxide in exercise sympatholysis. Journal of Applied Physiology, 2004, 97, 417-423.	1.2	49
50	Intensity and duration threshold for aerobic exercise-induced analgesia to pressure pain. Archives of Physical Medicine and Rehabilitation, 2004, 85, 1183-1187.	0.5	164
51	Is the blood flow response to a single contraction determined by work performed?. Journal of Applied Physiology, 2004, 96, 2146-2152.	1.2	35
52	Laser revascularization of ischemic skeletal muscle. Journal of Surgical Research, 2003, 115, 257-264.	0.8	3
53	Endogenous vascular remodeling in ischemic skeletal muscle: a role for nitric oxide. Journal of Applied Physiology, 2003, 94, 935-940.	1.2	17
54	Vasoconstriction in active skeletal muscles: a potential role for P2X purinergic receptors?. Journal of Applied Physiology, 2003, 95, 953-959.	1.2	28

#	Article	IF	CITATIONS
55	Muscle pump does not enhance blood flow in exercising skeletal muscle. Journal of Applied Physiology, 2003, 94, 6-10.	1.2	42
56	Elevation in resting blood flow attenuates exercise hyperemia. Journal of Applied Physiology, 2002, 93, 134-140.	1.2	17
57	Sympathetic restraint of muscle blood flow at the onset of dynamic exercise. Journal of Applied Physiology, 2002, 92, 2452-2456.	1.2	24
58	Attenuated vascular responsiveness to noradrenaline release during dynamic exercise in dogs. Journal of Physiology, 2002, 541, 637-644.	1.3	38
59	Attenuated sympathetic vasoconstriction in contracting muscles: just say NO. Journal of Physiology, 2002, 540, 2-2.	1.3	1
60	Exercise attenuates α-adrenergic-receptor responsiveness in skeletal muscle vasculature. Journal of Applied Physiology, 2001, 90, 172-178.	1.2	76
61	Parasympathetic innervation of canine tracheal smooth muscle. Journal of Applied Physiology, 2001, 90, 23-28.	1.2	6
62	The Paradox of Sympathetic Vasoconstriction in Exercising Skeletal Muscle. Exercise and Sport Sciences Reviews, 2001, 29, 159-163.	1.6	120
63	Dynamic exercise attenuates sympathetic responsiveness of canine vascular smooth muscle. Journal of Applied Physiology, 2000, 89, 2294-2299.	1.2	17
64	Functional anatomy of the vagal innervation of the cervical trachea of the dog. Journal of Applied Physiology, 2000, 89, 139-142.	1.2	7
65	Rapid vasodilation in response to a brief tetanic muscle contraction. Journal of Applied Physiology, 1999, 87, 1741-1746.	1.2	76
66	α-Adrenergic vasoconstriction in active skeletal muscles during dynamic exercise. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H33-H39.	1.5	53
67	Autonomic control of skeletal muscle blood flow at the onset of exercise. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1872-H1877.	1.5	37
68	Physiologic comparison of forward and reverse wheelchair propulsion. Archives of Physical Medicine and Rehabilitation, 1998, 79, 36-40.	0.5	12
69	Renal hemodynamic responses to dynamic exercise in rabbits. Journal of Applied Physiology, 1998, 85, 1605-1614.	1.2	26
70	Skeletal muscle vasodilation at the onset of exercise. Journal of Applied Physiology, 1998, 85, 1649-1654.	1.2	38
71	α ₁ -Adrenergic-receptor responsiveness in skeletal muscle during dynamic exercise. Journal of Applied Physiology, 1998, 85, 2277-2283.	1.2	31
72	Physiological effects of technique and rolling resistance in uphill roller skiing. Medicine and Science in Sports and Exercise, 1998, 30, 311-317.	0.2	19

#	Article	IF	CITATIONS
73	Effect of rolling resistance on poling forces and metabolic demands of roller skiing. Medicine and Science in Sports and Exercise, 1998, 30, 755-762.	0.2	21
74	Poling forces during roller skiing: effects of grade. Medicine and Science in Sports and Exercise, 1998, 30, 1637-1644.	0.2	36
75	Poling forces during roller skiing: effects of technique and speed. Medicine and Science in Sports and Exercise, 1998, 30, 1645-1653.	0.2	60
76	Autonomic control of skeletal muscle vasodilation during exercise. Journal of Applied Physiology, 1997, 83, 2037-2042.	1.2	21
77	Sympathetic vasoconstriction in active skeletal muscles during dynamic exercise. Journal of Applied Physiology, 1997, 83, 1575-1580.	1.2	68
78	Muscle chemoreflex increases renal sympathetic nerve activity during exercise. Journal of Applied Physiology, 1997, 82, 1818-1825.	1.2	16
79	Acute effects of ski waxing on pulmonary function. Medicine and Science in Sports and Exercise, 1997, 29, 1379-1382.	0.2	10
80	Does the amount of exercising muscle alter the aerobic demand of dynamic exercise?. European Journal of Applied Physiology and Occupational Physiology, 1996, 74, 541-547.	1.2	27
81	Relationships among heart rate, lactate concentration, and perceived effort for different types of rhythmic exercise in women. Archives of Physical Medicine and Rehabilitation, 1996, 77, 237-241.	O.5	27
82	Does the amount of exercising muscle alter the aerobic demand of dynamic exercise?. European Journal of Applied Physiology, 1996, 74, 541-547.	1.2	2
83	Effect of Velocity on Cycle Rate and Length for Three Roller Skiing Techniques. Journal of Applied Biomechanics, 1995, 11, 257-266.	0.3	21
84	Delta Efficiency of Uphill Roller Skiing With the Double Pole and Diagonal Stride Techniques. Applied Physiology, Nutrition, and Metabolism, 1995, 20, 465-479.	1.7	23
85	Physiological comparison of uphill roller skiing. Medicine and Science in Sports and Exercise, 1994, 26, 1284???1289.	0.2	28
86	Arterial blood pressure response to rowing. Medicine and Science in Sports and Exercise, 1994, 26, 715-719.	0.2	62
87	RESPIRATORY ALTERATIONS WITH INTRAPERICARDIAL PROCAINE IN THE CONSCIOUS RABBIT. Clinical and Experimental Pharmacology and Physiology, 1993, 20, 753-762.	0.9	2
88	Physiological Responses to Specific Maximal Exercise Tests for Cross-Country Skiing. Applied Physiology, Nutrition, and Metabolism, 1993, 18, 359-365.	1.7	16
89	Physiological aspects of competitive crossâ€country skiing. Journal of Sports Sciences, 1992, 10, 3-27.	1.0	37
90	Physiological responses to different cross country skiing techniques on level terrain. Medicine and Science in Sports and Exercise, 1990, 22, 841.	0.2	52

#	Article	IF	CITATIONS
91	Maximal inspiratory pressure following maximal exercise in trained and untrained subjects. Medicine and Science in Sports and Exercise, 1990, 22, 811.	0.2	63
92	Influence of Body Mass on Energy Cost of Roller Skiing. International Journal of Sport Biomechanics, 1990, 6, 374-385.	2.0	33
93	Development of Baroreflex Control of Heart Rate in Swine. Pediatric Research, 1990, 27, 148-152.	1.1	22
94	Effect of head-out water immersion on cardiorespiratory response to dynamic exercise. Journal of the American College of Cardiology, 1987, 10, 1254-1258.	1.2	93