
Carmen Tur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8066586/publications.pdf

Version: 2024-02-01

CADMEN THD

#	Article	IF	CITATIONS
1	MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nature Reviews Neurology, 2015, 11, 597-606.	4.9	422
2	Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain, 2015, 138, 1863-1874.	3.7	403
3	MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—clinical implementation in the diagnostic process. Nature Reviews Neurology, 2015, 11, 471-482.	4.9	354
4	Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis?. Neurology, 2008, 70, 1079-1083.	1.5	317
5	Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.	2.8	295
6	Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.	3.7	269
7	Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?. Annals of Clinical and Translational Neurology, 2017, 4, 663-679.	1.7	238
8	Association of Autonomic Dysfunction With Disease Progression and Survival in Parkinson Disease. JAMA Neurology, 2017, 74, 970.	4.5	162
9	Assessing treatment outcomes in multiple sclerosis trials and in the clinical setting. Nature Reviews Neurology, 2018, 14, 75-93.	4.9	115
10	Relationship between MRI lesion activity and response to IFN-β in relapsing–remitting multiple sclerosis patients. Multiple Sclerosis Journal, 2008, 14, 479-484.	1.4	104
11	Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis. Brain, 2015, 138, 2584-2595.	3.7	95
12	Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Multiple Sclerosis Journal, 2013, 19, 1175-1181.	1.4	93
13	Neurofilament light chain level is a weak risk factor for the development of MS. Neurology, 2016, 87, 1076-1084.	1.5	85
14	Spinal cord lesions: A modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Multiple Sclerosis Journal, 2018, 24, 301-312.	1.4	79
15	Fatigue Management in Multiple Sclerosis. Current Treatment Options in Neurology, 2016, 18, 26.	0.7	78
16	Value of the central vein sign at 3T to differentiate MS from seropositive NMOSD. Neurology, 2018, 90, e1183-e1190.	1.5	71
17	Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis. Brain, 2016, 139, 816-828.	3.7	67
18	Disability progression markers over 6–12 years in interferon-β-treated multiple sclerosis patients. Multiple Sclerosis Journal, 2018, 24, 322-330.	1.4	60

#	Article	IF	CITATIONS
19	Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: volumetric segmentation versus two-dimensional region of interest analysis. European Radiology, 2018, 28, 3779-3788.	2.3	58
20	Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg : Application to multiple sclerosis. NeuroImage: Clinical, 2016, 10, 71-77.	1.4	56
21	Change in the clinical activity of multiple sclerosis after treatment switch for suboptimal response. European Journal of Neurology, 2012, 19, 899-904.	1.7	55
22	Do multimodal evoked potentials add information to MRI in clinically isolated syndromes?. Multiple Sclerosis Journal, 2010, 16, 55-61.	1.4	54
23	Brain atrophy in natalizumab-treated patients: A 3-year follow-up. Multiple Sclerosis Journal, 2015, 21, 749-756.	1.4	51
24	Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nature Reviews Neurology, 2021, 17, 173-184.	4.9	46
25	Interferon Beta-1b for the Treatment of Primary Progressive Multiple Sclerosis. Archives of Neurology, 2011, 68, 1421.	4.9	44
26	Significant clinical worsening after natalizumab withdrawal: Predictive factors. Multiple Sclerosis Journal, 2015, 21, 780-785.	1.4	43
27	Inclusion of optic nerve involvement in dissemination in space criteria for multiple sclerosis. Neurology, 2018, 91, e1130-e1134.	1.5	43
28	Contribution of the symptomatic lesion in establishing MS diagnosis and prognosis. Neurology, 2016, 87, 1368-1374.	1.5	42
29	In vivo imaging of chronic active lesions in multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 683-690.	1.4	42
30	The long-term outcomes of CIS patients in the Barcelona inception cohort: Looking back to recognize aggressive MS. Multiple Sclerosis Journal, 2020, 26, 1658-1669.	1.4	41
31	Aggressive multiple sclerosis (1): Towards a definition of the phenotype. Multiple Sclerosis Journal, 2020, 26, 1031-1044.	1.4	39
32	Spinal cord atrophy as a primary outcome measure in phase II trials of progressive multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 932-941.	1.4	37
33	Structural network disruption markers explain disability in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 219-226.	0.9	37
34	Evaluating the response to glatiramer acetate in relapsing–remitting multiple sclerosis (RRMS) patients. Multiple Sclerosis Journal, 2014, 20, 1602-1608.	1.4	36
35	Primary progressive multiple sclerosis diagnostic criteria: a reappraisal. Multiple Sclerosis Journal, 2009, 15, 1459-1465.	1.4	35
36	Effect of Changes in MS Diagnostic Criteria Over 25 Years on Time to Treatment and Prognosis in Patients With Clinically Isolated Syndrome. Neurology, 2021, 97, e1641-e1652.	1.5	35

#	Article	IF	CITATIONS
37	Grey matter damage and overall cognitive impairment in primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2011, 17, 1324-1332.	1.4	33
38	Association of Slowly Expanding Lesions on MRI With Disability in People With Secondary Progressive Multiple Sclerosis. Neurology, 2022, 98, .	1.5	31
39	Relevance of timeâ€dependence for clinically viable diffusion imaging of the spinal cord. Magnetic Resonance in Medicine, 2019, 81, 1247-1264.	1.9	29
40	Natalizumab: Risk Stratification of Individual Patients with Multiple Sclerosis. CNS Drugs, 2014, 28, 641-648.	2.7	24
41	Brain microstructural and metabolic alterations detected <i>in vivo</i> at onset of the first demyelinating event. Brain, 2021, 144, 1409-1421.	3.7	24
42	Risk Acceptance in Multiple Sclerosis Patients on Natalizumab Treatment. PLoS ONE, 2013, 8, e82796.	1.1	23
43	Grey matter atrophy is associated with disability increase in natalizumab-treated patients. Multiple Sclerosis Journal, 2017, 23, 556-566.	1.4	21
44	Aggressive multiple sclerosis (2): Treatment. Multiple Sclerosis Journal, 2020, 26, 1045-1063.	1.4	21
45	Complementary roles of grey matter MTR and T2 lesions in predicting progression in early PPMS. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 423-428.	0.9	20
46	Head-to-head drug comparisons in multiple sclerosis. Neurology, 2019, 93, 793-809.	1.5	20
47	Predicting disability progression and cognitive worsening in multiple sclerosis using patterns of grey matter volumes. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 995-1006.	0.9	20
48	Clinical features of CIS of the brainstem/cerebellum of the kind seen in MS. Journal of Neurology, 2010, 257, 742-746.	1.8	19
49	Natalizumab discontinuation after PML risk stratification: outcome from a shared and informed decision. Multiple Sclerosis Journal, 2012, 18, 1193-1196.	1.4	19
50	Structural cortical network reorganization associated with early conversion to multiple sclerosis. Scientific Reports, 2018, 8, 10715.	1.6	19
51	HLA-DRB1*15 influences the development of brain tissue damage in early PPMS. Neurology, 2014, 83, 1712-1718.	1.5	18
52	Very early scans for demonstrating dissemination in time in multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 631-635.	1.4	17
53	Progressive MS trials: Lessons learned. Multiple Sclerosis Journal, 2017, 23, 1583-1592.	1.4	17
54	Humoral and Cellular Responses to SARS-CoV-2 in Convalescent COVID-19 Patients With Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, e1143.	3.1	17

#	Article	IF	CITATIONS
55	Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis. NeuroImage: Clinical, 2022, 35, 103048.	1.4	17
56	Value of NMO-IgG determination at the time of presentation as CIS. Neurology, 2012, 78, 1608-1611.	1.5	16
57	Use of Disease-Modifying Therapies in Pediatric Relapsing-Remitting Multiple Sclerosis in the United Kingdom. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	16
58	The risk of infections for multiple sclerosis and neuromyelitis optica spectrum disorder disease-modifying treatments: Eighth European Committee for Treatment and Research in Multiple Sclerosis Focused Workshop Review. April 2021. Multiple Sclerosis Journal, 2022, 28, 1424-1456.	1.4	16
59	HLA-DRB*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2016, 7, 47-52.	0.9	14
60	Clinical relevance of cortical network dynamics in early primary progressive MS. Multiple Sclerosis Journal, 2020, 26, 442-456.	1.4	14
61	A multi-shell multi-tissue diffusion study of brain connectivity in early multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 774-785.	1.4	13
62	High-dimensional detection of imaging response to treatment in multiple sclerosis. Npj Digital Medicine, 2019, 2, 49.	5.7	12
63	Spatial variability and changes of metabolite concentrations in the corticoâ€spinal tract in multiple sclerosis using coronal CSI. Human Brain Mapping, 2014, 35, 993-1003.	1.9	11
64	Ongoing microstructural changes in the cervical cord underpin disability progression in early primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 28-38.	1.4	11
65	Is humoral and cellular response to SARS-CoV-2 vaccine modified by DMT in patients with multiple sclerosis and other autoimmune diseases?. Multiple Sclerosis Journal, 2022, 28, 1138-1145.	1.4	11
66	Should we systematically test patients with clinically isolated syndrome for auto-antibodies?. Multiple Sclerosis Journal, 2015, 21, 1802-1810.	1.4	10
67	Single-subject structural cortical networks in clinically isolated syndrome. Multiple Sclerosis Journal, 2020, 26, 1392-1401.	1.4	10
68	Has the Time Come to Revisit Our Standard Measures of Disability Progression in Multiple Sclerosis?. Neurology, 2021, 96, 12-13.	1.5	10
69	Treatment response scoring systems to assess long-term prognosis in self-injectable DMTs relapsing–remitting multiple sclerosis patients. Journal of Neurology, 2022, 269, 452-459.	1.8	10
70	Linear brain atrophy measures in multiple sclerosis and clinically isolated syndromes: a 30-year follow-up. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 839-846.	0.9	9
71	Sodium in the Relapsing–Remitting Multiple Sclerosis Spinal Cord: Increased Concentrations and Associations With Microstructural Tissue Anisotropy. Journal of Magnetic Resonance Imaging, 2020, 52, 1429-1438.	1.9	8
72	Serum neurofilament light chain levels predict long-term disability progression in patients with progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 732-740.	0.9	8

#	Article	IF	CITATIONS
73	Oral contraceptives do not modify the risk of a second attack and disability accrual in a prospective cohort of women with a clinically isolated syndrome and early multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 950-957.	1.4	7
74	CSF oligoclonal bands are important in the diagnosis of multiple sclerosis, unreasonably downplayed by the McDonald Criteria 2010: No. Multiple Sclerosis Journal, 2013, 19, 717-718.	1.4	6
75	Brain atrophy 15 years after CIS: Baseline and follow-up clinico-radiological correlations. Multiple Sclerosis Journal, 2018, 24, 721-727.	1.4	6
76	Assessing Lumbar Plexus and Sciatic Nerve Damage in Relapsing-Remitting Multiple Sclerosis Using Magnetisation Transfer Ratio. Frontiers in Neurology, 2021, 12, 763143.	1.1	6
77	An observational study of the effectiveness and safety of natalizumab in the treatment of multiple sclerosis. Revista De Neurologia, 2011, 52, 321-30.	7.6	6
78	Spatial patterns of brain lesions assessed through covariance estimations of lesional voxels in multiple Sclerosis: The SPACE-MS technique. NeuroImage: Clinical, 2022, 33, 102904.	1.4	5
79	Impact of COVID-19 pandemic on frequency of clinical visits, performance of MRI studies, and therapeutic choices in a multiple sclerosis referral centre. Journal of Neurology, 2022, 269, 1764-1772.	1.8	5
80	Multiple sclerosis risk perception and acceptance for Brazilian patients. Arquivos De Neuro-Psiquiatria, 2018, 76, 6-12.	0.3	4
81	Secondary Progression is Not the Only Explanation. Acta Medica Portuguesa, 2014, 27, 393-396.	0.2	3
82	Subcutaneous alemtuzumab for multiple sclerosis. Expert Review of Clinical Immunology, 2012, 8, 423-426.	1.3	2
83	NMO spectrum disorders: how wide is the spectrum?. Multiple Sclerosis Journal, 2014, 20, 1417-1419.	1.4	2
84	Oral laquinimod for multiple sclerosis: beyond the anti-inflammatory effect. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 832-832.	0.9	2
85	Secondary progressive NMO, or concomitant NMO and a primary neurodegenerative disorder?. Multiple Sclerosis Journal, 2015, 21, 1876-1878.	1.4	2
86	Response to the commentary of Yates RL and DeLuca GC on the study: HLA-DRB1*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 19, 168-170.	0.9	2
87	Disrupted principal network organisation in multiple sclerosis relates to disability. Scientific Reports, 2020, 10, 3620.	1.6	2
88	Ibudilast. Neurology, 2021, 96, 141-142.	1.5	2
89	Understanding the role of gender and hormones in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 518-519.	1.4	1
90	Commentary on Pique et al.'s paper entitled: Peripheral late reactivation of a previously typical monofocal Balo's concentric sclerosis lesion. Multiple Sclerosis Journal, 2015, 21, 1084-1086.	1.4	1

#	Article	IF	CITATIONS
91	Pharmacological treatment for chronic central neuropathic pain in people with multiple sclerosis. The Cochrane Library, 2020, , .	1.5	1
92	Translating pHâ€sensitive PROgressive saturation for QUantifying Exchange rates using Saturation Times (PROâ€QUEST) MRI to a 3T clinical scanner. Magnetic Resonance in Medicine, 2020, 84, 1734-1746.	1.9	1
93	Machine and deep learning in MS research are just powerful statistics – Yes. Multiple Sclerosis Journal, 2021, 27, 661-662.	1.4	1
94	An overview of the association between gray matter damage and cognitive impairment in multiple sclerosis. Neurodegenerative Disease Management, 2012, 2, 503-515.	1.2	0
95	Possible new modifications for the McDonald 2010 criteria for the diagnosis of primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 993-994.	1.4	0
96	Comment on †Fingolimod to treat severe MS after natalizumab-associated progressive multifocal leukoencephalopathy: a valid option?' Maillart et al Multiple Sclerosis Journal, 2014, 20, 510-511.	1.4	0
97	Comment on severe demyelination but no astrocytopathy in clinically definite neuromyelitis optica with anti-myelin-oligodendrocyte glycoprotein antibody. Multiple Sclerosis Journal, 2015, 21, 660-661.	1.4	0
98	Spatial Characterisation of Fibre Response Functions for Spherical Deconvolution in Multiple Sclerosis. Mathematics and Visualization, 2019, , 265-279.	0.4	0
99	A R-Script for Generating Multiple Sclerosis Lesion Pattern Discrimination Plots. Brain Sciences, 2021, 11, 90.	1.1	0