Marisa Segal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8066404/publications.pdf Version: 2024-02-01

MARISA SECAL

#	Article	IF	CITATIONS
1	A Novel Role of the Budding Yeast Separin Esp1 in Anaphase Spindle Elongation. Journal of Cell Biology, 2001, 152, 27-40.	2.3	135
2	Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends in Cell Biology, 2001, 11, 160-166.	3.6	105
3	Dosage Suppressors of pds1 Implicate Ubiquitin-Associated Domains in Checkpoint Control. Molecular and Cellular Biology, 2001, 21, 1997-2007.	1.1	86
4	Clb5-associated Kinase Activity is Required Early in the Spindle Pathway for Correct Preanaphase Nuclear Positioning in Saccharomyces cerevisiae. Journal of Cell Biology, 1998, 143, 135-145.	2.3	61
5	Coordinated Spindle Assembly and Orientation Requires Clb5p-Dependent Kinase in Budding Yeast. Journal of Cell Biology, 2000, 148, 441-452.	2.3	61
6	Spatial regulation of the guanine nucleotide exchange factor Lte1 inSaccharomyces cerevisiae. Journal of Cell Science, 2002, 115, 4977-4991.	1.2	61
7	Bud6 Directs Sequential Microtubule Interactions with the Bud Tip and Bud Neck during Spindle Morphogenesis inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2000, 11, 3689-3702.	0.9	57
8	Cortical capture of microtubules and spindle polarity in budding yeast - where's the catch?. Journal of Cell Science, 2005, 118, 463-471.	1.2	52
9	The Pds1 anaphase inhibitor and Mec1 kinase define distinct checkpoints coupling S phase with mitosis in budding yeast. Current Biology, 1999, 9, 365-370.	1.8	45
10	Mechanism for Astral Microtubule Capture by Cortical Bud6p Priming Spindle Polarity in S.Âcerevisiae. Current Biology, 2012, 22, 1075-1083.	1.8	42
11	Mec1p regulates Pds1p levels in S phase: complex coordination of DNA replication and mitosis. Nature Cell Biology, 2001, 3, 619-627.	4.6	41
12	Differential contribution of Bud6p and Kar9p to microtubule capture and spindle orientation in S. cerevisiae. Journal of Cell Biology, 2004, 167, 231-244.	2.3	40
13	S-phase checkpoint controls mitosis via an APC-independent Cdc20p function. Nature Cell Biology, 2003, 5, 928-935.	4.6	38
14	Kar9p-independent Microtubule Capture at Bud6p Cortical Sites Primes Spindle Polarity before Bud Emergence inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2002, 13, 4141-4155.	0.9	35
15	Phosphorylation of Spc110p by Cdc28p-Clb5p kinase contributes to correct spindle morphogenesis in S. cerevisiae. Journal of Cell Science, 2007, 120, 435-446.	1.2	32
16	The Protease Activity of Yeast Separase (Esp1) Is Required for Anaphase Spindle Elongation Independently of Its Role In Cleavage of Cohesin. Genetics, 2008, 178, 2361-2372.	1.2	31
17	Dissecting the involvement of formins in Bud6p-mediated cortical capture of microtubules in S. cerevisiae. Journal of Cell Science, 2008, 121, 3803-3814.	1.2	30
18	Actin-mediated Delivery of Astral Microtubules Instructs Kar9p Asymmetric Loading to the Bud-Ward Spindle Pole. Molecular Biology of the Cell, 2010, 21, 2685-2695.	0.9	25

MARISA SEGAL

#	Article	IF	CITATIONS
19	Spindle Pole Body History Intrinsically Links Pole Identity with Asymmetric Fate in Budding Yeast. Current Biology, 2013, 23, 1310-1319.	1.8	23
20	Two Distinct Regions of Ras Participate in Functional Interaction with GDP-GTP Exchangers. FEBS Journal, 1995, 228, 96-101.	0.2	18
21	Spindle Polarity inS. cerevisiae: MEN Can Tell. Cell Cycle, 2002, 1, 308-311.	1.3	15
22	Cdc25 is not the signal receiver for glucose induced cAMP response inS. cerevisiae. FEBS Letters, 1994, 356, 249-254.	1.3	14
23	The Ras pathway and spindle assembly collide?. BioEssays, 2001, 23, 307-310.	1.2	13
24	Mitotic Exit Control: A Space and Time Odyssey. Current Biology, 2011, 21, R857-R859.	1.8	13
25	Temporal Coupling of Spindle Disassembly and Cytokinesis is Disrupted by Deletion of LTE1 in Budding Yeast. Cell Cycle, 2004, 3, 815-820.	1.3	9
26	Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae. Results and Problems in Cell Differentiation, 2017, 61, 49-82.	0.2	7
27	Orderly assembly underpinning built-in asymmetry in the yeast centrosome duplication cycle requires cyclin-dependent kinase. ELife, 2020, 9, .	2.8	5
28	Ase1p phosphorylation by cyclin-dependent kinase promotes correct spindle assembly in <i>S. cerevisiae</i> . Cell Cycle, 2011, 10, 1988-1997.	1.3	4
29	Analysis of the Localization of MEN Components by Live Cell Imaging Microscopy. Methods in Molecular Biology, 2017, 1505, 151-166.	0.4	4
30	Cdc20 in S-phase: The Banquo at Replication's Banquet. Cell Cycle, 2004, 3, 274-277.	1.3	2