Tu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8065191/publications.pdf

Version: 2024-02-01

55	1,088	20	31
papers	citations	h-index	g-index
55	55	55	1381 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Recyclable positive azeotropes for the purification of curcumin with optimum purity and solvent capacity. Chemical Engineering Research and Design, 2022, 180, 200-211.	5. 6	1
2	Crystallization of Form II Paracetamol with the Assistance of Carboxylic Acids toward Batch and Continuous Processes. Pharmaceutics, 2022, 14, 1099.	4.5	3
3	Unconventional separation of arsenic trioxide from unused aqueous chemotherapeutic agents by direct evaporative crystallization. Separation Science and Technology, 2021, 56, 2634-2647.	2.5	O
4	Strategy for polymorphic control by enzymatic reaction and antisolvent crystallization: effect of aminoacylase on metastable \hat{l}^2 -glycine formation. Reaction Chemistry and Engineering, 2021, 6, 2292-2305.	3.7	2
5	Engineering terephthalic acid product from recycling of PET bottles waste for downstream operations. Chemical Engineering Journal Advances, 2021, 5, 100079.	5.2	29
6	A Novel Hydrate Form of Sodium Dodecyl Sulfate and Its Crystallization Process. ACS Omega, 2021, 6, 15770-15781.	3 . 5	14
7	Effects of Scale-Up and Impeller Types on Spherical Agglomeration of Dimethyl Fumarate. Industrial & Samp; Engineering Chemistry Research, 2021, 60, 11555-11567.	3.7	7
8	Co-Crystallization Kinetics of 2:1 Benzoic Acid–Sodium Benzoate Co-Crystal: The Effect of Templating Molecules in a Solution. Crystals, 2021, 11, 812.	2.2	3
9	Selective formation of form II paracetamol through the assistance of paracetamol co-crystals as templates in a solution. CrystEngComm, 2021, 23, 3940-3945.	2.6	5
10	Reproducible Crystallization of Sodium Dodecyl Sulfate $\hat{A}\cdot 1/8$ Hydrate by Evaporation, Antisolvent Addition, and Cooling. ACS Omega, 2020, 5, 1068-1079.	3. 5	13
11	Recovery of Active Pharmaceutical Ingredients from Unused Solid Dosage-Form Drugs. ACS Omega, 2020, 5, 29147-29157.	3 . 5	13
12	Editorial: Supramolecular Nanomaterials for Engineering, Drug Delivery, and Medical Applications. Frontiers in Chemistry, 2020, 8, 626468.	3 . 6	6
13	Cocrystallization of Caffeine–Maleic Acid in a Batchelor Vortex Flow. Crystal Growth and Design, 2020, 20, 1618-1627.	3.0	6
14	Mixing Effect on Stoichiometric Diversity in Benzoic Acid–Sodium Benzoate Cocrystals. Crystal Growth and Design, 2019, 19, 1576-1583.	3.0	7
15	Green Technology for Salt Formation: Slurry Reactive Crystallization Studies for Papaverine HCl and 1:1 Haloperidol–Maleic Acid Salt. Crystal Growth and Design, 2019, 19, 2881-2891.	3.0	6
16	Intensified Crystallization Processes for 1:1 Drug–Drug Cocrystals of Sulfathiazole–Theophylline, and Sulfathiazole–Sulfanilamide. Crystal Growth and Design, 2018, 18, 1339-1349.	3.0	20
17	A quick-fix design of phase change material by particle blending and spherical agglomeration. Applied Energy, 2017, 191, 239-250.	10.1	27
18	Continuous Preparation of 1:1 Haloperidol–Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder. Molecular Pharmaceutics, 2017, 14, 1278-1291.	4.6	40

#	Article	IF	CITATIONS
19	Crystallization process development of metal–organic frameworks by linking secondary building units, lattice nucleation and luminescence: insight into reproducibility. CrystEngComm, 2017, 19, 426-441.	2.6	34
20	Round Granules of Dimethyl Fumarate by Three-in-One Intensified Process of Reaction, Crystallization, and Spherical Agglomeration in a Common Stirred Tank. Organic Process Research and Development, 2017, 21, 1326-1339.	2.7	12
21	Biomimetic Taste Receptors with Chiral Recognition by Photoluminescent Metal–Organic Frameworks Chelated with Polyaniline Helices. Chemistry - A European Journal, 2016, 22, 1406-1414.	3.3	8
22	Metal-organic framework engineering: directed assembly from molecules to spherical agglomerates. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62, 10-20.	5.3	10
23	The culprit of gout: triggering factors and formation of monosodium urate monohydrate. CrystEngComm, 2016, 18, 290-297.	2.6	16
24	Effects of baffle configuration and tank size on spherical agglomerates of dimethyl fumarate in a common stirred tank. International Journal of Pharmaceutics, 2015, 495, 886-894.	5.2	10
25	Direct co-crystal assembly from synthesis to co-crystallization. CrystEngComm, 2015, 17, 9002-9006.	2.6	13
26	Thermal properties and structural characterizations of new types of phase change material: Anhydrous and hydrated palmitic acid/camphene solid dispersions. Thermochimica Acta, 2014, 575, 81-89.	2.7	10
27	Large-Scale Crystallization of a Pure Metastable Polymorph by Reaction Coupling. Organic Process Research and Development, 2014, 18, 539-545.	2.7	19
28	Bio-inspired phase change materials designed for high specific heat of solid phase. Thermochimica Acta, 2014, 591, 61-67.	2.7	3
29	Engineering Reaction and Crystallization and the Impact on Filtration, Drying, and Dissolution Behaviors: The Study of Acetaminophen (Paracetamol) by In-Process Controls. Organic Process Research and Development, 2013, 17, 1168-1178.	2.7	24
30	Propagation of Biochirality: Crossovers and Nonclassical Crystallization Kinetics of Aspartic Acid in Water. Chirality, 2013, 25, 768-779.	2.6	3
31	A biomimetic tongue by photoluminescent metal–organic frameworks. Biosensors and Bioelectronics, 2013, 43, 56-62.	10.1	28
32	Stabilization and spheroidization of ammonium nitrate: Co-crystallization with crown ethers and spherical crystallization by solvent screening. Chemical Engineering Journal, 2013, 225, 809-817.	12.7	38
33	Riboflavin Chelated Luminescent Metal–Organic Framework: Identified by Liquid-Assisted Grinding for Large-Molecule Sensing via Chromaticity Coordinates. Crystal Growth and Design, 2012, 12, 3181-3190.	3.0	19
34	Continuous Co-Crystallization As a Separation Technology: The Study of 1:2 Co-Crystals of Phenazine–Vanillin. Crystal Growth and Design, 2012, 12, 5897-5907.	3.0	38
35	A Biomimetic Nose by Microcrystals and Oriented Films of Luminescent Porous Metal–Organic Frameworks. Crystal Growth and Design, 2011, 11, 4146-4154.	3.0	47
36	The Origin of Life and the Crystallization of Aspartic Acid in Water. Crystal Growth and Design, 2010, 10, 1652-1660.	3.0	27

#	Article	IF	Citations
37	Photoluminescence and Crystal Structures of Chiro-Optical 1,1′-Bi-2-naphthol Crystals and Their Inclusion Compounds with Dimethyl Sulfoxide. Crystal Growth and Design, 2010, 10, 3547-3554.	3.0	13
38	Screening, Manufacturing, Photoluminescence, and Molecular Recognition of Co-Crystals: Cytosine with Dicarboxylic Acids. Crystal Growth and Design, 2010, 10, 1419-1434.	3.0	65
39	Initial Salt Screening Procedures for Manufacturing Ibuprofen. Drug Development and Industrial Pharmacy, 2009, 35, 555-567.	2.0	30
40	Biomimetic Gallstone Formation: Crystallization of Calcium Carbonate by the Evolving Taurocholateâ^'Lecithinâ^'Cholesterol Complex Lipid System. Crystal Growth and Design, 2009, 9, 3737-3748.	3.0	9
41	Sucrose Conformational Polymorphism: A Jigsaw Puzzle with Multiple Routes to a Unique Solution. Crystal Growth and Design, 2009, 9, 3551-3561.	3.0	26
42	Dissolution Enhancement by Bio-Inspired Mesocrystals: The Study of Racemic (R,S)-(\hat{A}_{\pm})-Sodium Ibuprofen Dihydrate. Pharmaceutical Research, 2008, 25, 1563-1571.	3.5	30
43	The Prediction of the Dissolution Rate Constant by Mixing Rules: The Study of Acetaminophen Batches. Drug Development and Industrial Pharmacy, 2008, 34, 522-535.	2.0	4
44	Effects of Homochiral Molecules of (S)-(+)-Ibuprofen and (S)-(\hat{a} -')-Sodium Ibuprofen Dihydrate on the Crystallization Kinetics of Racemic (R,S)-(\hat{A} ±)-Sodium Ibuprofen Dihydrate. Crystal Growth and Design, 2008, 8, 415-426.	3.0	20
45	A Cross-Performance Relationship Between Carr's Index and Dissolution Rate Constant: The Study of Acetaminophen Batches. Drug Development and Industrial Pharmacy, 2007, 33, 1273-1284.	2.0	15
46	Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum(III) (Alq3) by Crystal Engineering. Crystal Growth and Design, 2007, 7, 1803-1810.	3.0	39
47	Polymorph Farming of Acetaminophen and Sulfathiazole on a Chip. Pharmaceutical Research, 2006, 23, 2542-2555.	3.5	20
48	Bioavailability enhancement of a COX-2 inhibitor, BMS-347070, from a nanocrystalline dispersion prepared by spray-drying. Journal of Pharmaceutical Sciences, 2005, 94, 1598-1607.	3.3	55
49	Control of the Particle Properties of a Drug Substance by Crystallization Engineering and the Effect on Drug Product Formulation. Organic Process Research and Development, 2005, 9, 894-901.	2.7	55
50	Hierarchical Structureâ [^] Ferroelectricity Relationships of Barium Titanate Particles. Crystal Growth and Design, 2001, 1, 401-419.	3.0	45
51	Barium Titanate Nanoparticles in Block Copolymer. Langmuir, 2001, 17, 7656-7663.	3.5	13
52	Disorderâ~'Order Transition in Mesoscopic Silica Thin Films. Chemistry of Materials, 2000, 12, 1536-1548.	6.7	50
53	Nanoscale Patterning of Barium Titanate on Block Copolymers. Langmuir, 1997, 13, 3866-3870.	3.5	34
54	Quick-fix agarose beads impregnated with hydrous ferric oxide for As(III) species removal from pharmaceutical wastewater. Separation Science and Technology, 0, , 1-17.	2.5	2

#	Article	lF	CITATIONS
55	Saving energy upon water removal in drying by making the $\langle i \rangle \hat{l} \pm \langle i \rangle$ -polymorph of $\langle i \rangle L \langle i \rangle$ -glutamic acid. Separation Science and Technology, 0, , 1-18.	2.5	2