
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8064832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 2005, 29, 795-811.	3.9	1,401
2	Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 2004, 82, 1016-1045.	1.2	534
3	Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles – a critique. FEMS Microbiology Ecology, 2002, 42, 1-14.	1.3	472
4	Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiology Ecology, 2000, 31, 185-194.	1.3	452
5	Wood decomposition, higher fungi, and their role in nutrient redistribution. Canadian Journal of Botany, 1995, 73, 1377-1383.	1.2	236
6	Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia, 1999, 91, 13-32.	0.8	205
7	Rapid and Recent Changes in Fungal Fruiting Patterns. Science, 2007, 316, 71-71.	6.0	194
8	Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiology Ecology, 2016, 92, fiw179.	1.3	191
9	Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME Journal, 2012, 6, 1992-2001.	4.4	189
10	Saprotrophic Cord-Forming Fungi: Meeting the Challenge of Heterogeneous Environments. Mycologia, 1999, 91, 13.	0.8	182
11	Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycological Research, 1993, 97, 641-655.	2.5	178
12	Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecology, 2010, 3, 338-346.	0.7	175
13	Priority effects during fungal community establishment in beech wood. ISME Journal, 2015, 9, 2246-2260.	4.4	160
14	ORIGINS OF DECAY IN LIVING DECIDUOUS TREES: THE ROLE OF MOISTURE CONTENT AND A RE-APPRAISAL OF THE EXPANDED CONCEPT OF TREE DECAY. New Phytologist, 1983, 94, 623-641.	3.5	156
15	Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiology, 2001, 21, 71-82.	1.4	156
16	Climate variation effects on fungal fruiting. Fungal Ecology, 2014, 10, 20-33.	0.7	148
17	Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecology Letters, 2011, 14, 1134-1142.	3.0	136
18	Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry, 2014, 70, 151-158.	4.2	135

#	Article	IF	CITATIONS
19	Fungal colonization of attached beech branches. II. Spatial and temporal organization of communities arising from latent invaders in bark and functional sapwood, under different moisture regimes. New Phytologist, 1988, 110, 47-57.	3.5	127
20	A fungal perspective on conservation biology. Conservation Biology, 2015, 29, 61-68.	2.4	125
21	Biological solutions to transport network design. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2307-2315.	1.2	123
22	Topâ€down control of soil fungal community composition by a globally distributed keystone consumer. Ecology, 2013, 94, 2518-2528.	1.5	119
23	Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiology Ecology, 2008, 63, 181-191.	1.3	118
24	Mycelial responses of the soil fungus, Mortierella isabellina, to grazing by Onychiurus armatus (collembola). Soil Biology and Biochemistry, 1991, 23, 361-366.	4.2	111
25	Effect of temperature and water potential on growth rate of wood-rotting basidiomycetes. Transactions of the British Mycological Society, 1983, 80, 141-149.	0.6	108
26	Changes in Volatile Production During the Course of Fungal Mycelial Interactions Between Hypholoma fasciculare and Resinicium bicolor. Journal of Chemical Ecology, 2006, 33, 43-57.	0.9	106
27	Warming-induced shift in European mushroom fruiting phenology. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14488-14493.	3.3	104
28	Inhibition and Stimulation Effects in Communities of Wood Decay Fungi: Exudates from Colonized Wood Influence Growth by Other Species. Microbial Ecology, 2005, 49, 399-406.	1.4	103
29	Analysis of fungal networks. Fungal Biology Reviews, 2012, 26, 12-29.	1.9	103
30	Fungus wars: basidiomycete battles in wood decay. Studies in Mycology, 2018, 89, 117-124.	4.5	101
31	Effects of oxygen, pH and nitrate concentration on denitrification byPseudomonasspecies. FEMS Microbiology Letters, 1994, 118, 181-186.	0.7	100
32	Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genetics and Biology, 2010, 47, 562-571.	0.9	98
33	Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. Microbiology Spectrum, 2016, 4, .	1.2	91
34	ECOLOGICAL ROLES OF BASIDIOMYCETES FORMING DECAY COMMUNITIES IN ATTACHED OAK BRANCHES. New Phytologist, 1983, 93, 77-88.	3.5	87
35	Climate change and spring-fruiting fungi. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1169-1177.	1.2	81
36	Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience, 2009, 50, 9-19.	0.3	80

#	Article	IF	CITATIONS
37	Resource relationships of foraging mycelial systems of Phanerochaete velutina and Hypholoma fasciculare in soil. New Phytologist, 1989, 111, 501-509.	3.5	79
38	An Evaluation of 18S rDNA Approaches for the Study of Fungal Diversity in Grassland Soils. Microbial Ecology, 2004, 47, 385-95.	1.4	75
39	Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia, 2011, 167, 535-545.	0.9	74
40	The fate of soil-derived phosphorus in mycelial cord systems of Phanerochaete velutina and Phallus impudicus. New Phytologist, 1990, 114, 595-606.	3.5	73
41	Neural network analysis of flow cytometric data for 40 marine phytoplankton species. Cytometry, 1994, 15, 283-293.	1.8	73
42	Fungal Communities in the Decay of Wood. Advances in Microbial Ecology, 1988, , 115-166.	0.1	72
43	Fractal analysis in studies of mycelium in soil. Geoderma, 1999, 88, 301-328.	2.3	72
44	Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecology, 2014, 10, 34-43.	0.7	72
45	Wood decay, and phosphorus and fungal biomass allocation, in mycelial cord systems. New Phytologist, 1990, 116, 285-295.	3.5	71
46	Changes in volatile production during interspecific interactions between four wood rotting fungi growing in artificial media. Fungal Ecology, 2008, 1, 57-68.	0.7	70
47	Characterization of the spatial aspects of foraging mycelial cord systems using fractal geometry. Mycological Research, 1993, 97, 762-768.	2.5	68
48	Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data. Marine Ecology - Progress Series, 2000, 195, 47-59.	0.9	68
49	Fungal decomposition of attached angiosperm twigs I. Decay community development in ash, beech and oak. New Phytologist, 1990, 116, 407-415.	3.5	67
50	Invertebrate grazing determines enzyme production by basidiomycete fungi. Soil Biology and Biochemistry, 2011, 43, 2060-2068.	4.2	67
51	Ecological concepts in food microbiology. Journal of Applied Bacteriology, 1992, 73, 23S-38S.	1.1	66
52	Aquatic fungal ecology – How does it differ from terrestrial?. Fungal Ecology, 2016, 19, 5-13.	0.7	66
53	Microclimate and moisture dynamics of wood decomposing in terrestrial ecosystems. Soil Biology and Biochemistry, 1983, 15, 149-157.	4.2	65
54	Antagonistic fungal interactions influence carbon dioxide evolution from decomposing wood. Fungal Ecology, 2015, 14, 24-32.	0.7	64

#	Article	IF	CITATIONS
55	Ecology of Daldinia concentrica: Effect of abiotic variables on mycelial extension and interspecific interactions. Transactions of the British Mycological Society, 1985, 85, 201-211.	0.6	63
56	Phosphorus translocation by saprotrophic basidiomycete mycelial cord systems on the floor of a mixed deciduous woodland. Mycological Research, 1995, 99, 977-980.	2.5	63
57	Species-specific impacts of collembola grazing on fungal foraging ecology. Soil Biology and Biochemistry, 2008, 40, 434-442.	4.2	63
58	Host shifts in fungi caused by climate change?. Fungal Ecology, 2011, 4, 184-190.	0.7	63
59	Carbon dioxide release from decomposing wood: Effect of water content and temperature. Soil Biology and Biochemistry, 1983, 15, 501-510.	4.2	62
60	Fungal colonization of attached beech branches. I. Early stages of development of fungal communities. New Phytologist, 1988, 110, 39-45.	3.5	62
61	Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Global Change Biology, 2012, 18, 1823-1832.	4.2	62
62	The form and outcome of mycelial interactions involving cord-forming decomposer basidiomycetes in homogeneous and heterogeneous environments. New Phytologist, 1988, 109, 423-432.	3.5	61
63	Armed and dangerous – Chemical warfare in wood decay communities. Fungal Biology Reviews, 2017, 31, 169-184.	1.9	61
64	Extracellular enzyme localization during interspecific fungal interactions. FEMS Microbiology Letters, 1992, 98, 75-79.	0.7	60
65	Support vector machines for identifying organisms — a comparison with strongly partitioned radial basis function networks. Ecological Modelling, 2001, 146, 57-67.	1.2	60
66	Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter II. Resource capture and persistence. New Phytologist, 1988, 109, 343-349.	3.5	59
67	Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis. New Phytologist, 1989, 111, 699-705.	3.5	59
68	11 Methods for Studying Fungi in Soil and Forest Litter. Methods in Microbiology, 1990, 22, 343-404.	0.4	58
69	Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil. FEMS Microbiology Ecology, 2011, 78, 80-90.	1.3	58
70	Mushroom's spore size and time of fruiting are strongly related: is moisture important?. Biology Letters, 2011, 7, 273-276.	1.0	58
71	Imaging complex nutrient dynamics in mycelial networks. Journal of Microscopy, 2008, 231, 317-331.	0.8	57
72	Production and effects of volatile organic compounds during interspecific interactions. Fungal Ecology, 2016, 20, 144-154.	0.7	57

#	Article	IF	CITATIONS
73	The Mycelium as a Network. Microbiology Spectrum, 2017, 5, .	1.2	57
74	Structure and development of fungal communities in beech logs four and a half years after felling. FEMS Microbiology Letters, 1988, 53, 59-70.	0.7	56
75	Simulated nitrogen deposition affects wood decomposition by cord-forming fungi. Oecologia, 2011, 167, 1177-1184.	0.9	56
76	Abiotic variables effect differential expression of latent infections in beech (Fagus sylvatica). New Phytologist, 2002, 155, 449-460.	3.5	55
77	Small scale variation in decay rate within logs one year after felling: Effect of fungal community structure and moisture content. FEMS Microbiology Letters, 1989, 62, 173-183.	0.7	54
78	The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. , 2006, , 151-181.		54
79	Effects of pre-colonisation and temperature on interspecific fungal interactions in wood. Fungal Ecology, 2016, 21, 32-42.	0.7	54
80	Interactions Between Ecto-mycorrhizal and Saprotrophic Fungi. Ecological Studies, 2002, , 345-372.	0.4	52
81	Interactions between callus cultures of European beech, indigenous ascomycetes and derived fungal extracts. New Phytologist, 1993, 123, 421-428.	3.5	51
82	Mycelial interactions, morphogenesis and ecology of Phlebia radiata and P. rufa from oak. Transactions of the British Mycological Society, 1983, 80, 437-448.	0.6	50
83	Pattern recognition in flow cytometry. Cytometry, 2001, 44, 195-209.	1.8	50
84	Identification of Phytoplankton from Flow Cytometry Data by Using Radial Basis Function Neural Networks. Applied and Environmental Microbiology, 1999, 65, 4404-4410.	1.4	48
85	Chapter 12 Basidiomycete community development in temperate angiosperm wood. British Mycological Society Symposia Series, 2008, 28, 211-237.	0.5	48
86	Size matters: What have we learnt from microcosm studies ofÂdecomposer fungus–invertebrate interactions?. Soil Biology and Biochemistry, 2014, 78, 274-283.	4.2	48
87	Effect of temperature on wood decay and translocation of soilâ€derived phosphorus in mycelial cord systems. New Phytologist, 1995, 129, 289-297.	3.5	47
88	Population structure, inter-mycelial interactions and infection biology of Stereum gausapatum. Transactions of the British Mycological Society, 1982, 78, 337-351.	0.6	46
89	Collembolan grazing affects the growth strategy of the cord-forming fungus Hypholoma fasciculare. Soil Biology and Biochemistry, 2004, 36, 591-599.	4.2	46
90	Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola). FEMS Microbiology Ecology, 2006, 58, 33-40.	1.3	46

#	Article	IF	CITATIONS
91	Chapter 5 Fruit bodies: Their production and development in relation to environment. British Mycological Society Symposia Series, 2008, 28, 79-103.	0.5	45
92	Big data integration: Pan-European fungal species observations' assembly for addressing contemporary questions in ecology and global change biology. Fungal Biology Reviews, 2017, 31, 88-98.	1.9	45
93	Climate impacts on fungal community and trait dynamics. Fungal Ecology, 2016, 22, 17-25.	0.7	44
94	Development of mycelial systems of Stropharia caerulea and Phanerochaete velutina on soil: effect of temperature and water potential. Mycological Research, 1997, 101, 705-713.	2.5	43
95	Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biology and Biochemistry, 2003, 35, 1143-1154.	4.2	43
96	Ecology of Hericium cirrhatum, H. coralloides and H. erinaceus in the UK. Fungal Ecology, 2011, 4, 163-173.	0.7	43
97	Species-specific effects of grazing invertebrates on mycelial emergence and growth from woody resources into soil. Fungal Ecology, 2011, 4, 333-341.	0.7	42
98	Carbon translocation in mycelial cord systems of Phanerochaete velutina (DC: Pers.) Parmasto. New Phytologist, 1995, 129, 467-476.	3.5	41
99	Chapter 9 Interactions between basidiomycota and invertebrates. British Mycological Society Symposia Series, 2008, 28, 155-179.	0.5	40
100	Fungal decomposition of attached angiosperm twigs. III. Effect of water potential and temperature on fungal growth, survival and decay of wood. New Phytologist, 1991, 117, 259-269.	3.5	39
101	Interspecific carbon exchange and cost of interactions between basidiomycete mycelia in soil and wood. Functional Ecology, 2002, 16, 153-161.	1.7	39
102	Pathogens of Autotrophs. , 2016, , 245-292.		39
103	Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Functional Ecology, 2019, 33, 372-387.	1.7	39
104	Patch formation and developmental polarity in mycelial cord systems of Phanerochaete velutina on a nutrientâ€depleted soil. New Phytologist, 1997, 136, 653-665.	3.5	38
105	Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza, 2004, 14, 37-45.	1.3	38
106	Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete velutina and Resinicium bicolor. Mycological Research, 2006, 110, 335-345.	2.5	38
107	DECOMPOSITION OF SUPPRESSED OAK TREES IN EVEN-AGED PLANTATIONS II. COLONIZATION OF TREE ROOTS BY CORD- AND RHIZOMORPH-PRODUCING BASIDIOMYCETES. New Phytologist, 1983, 93, 277-291.	3.5	37
108	Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter I. Initial establishment. New Phytologist, 1988, 109, 335-341.	3.5	37

#	Article	IF	CITATIONS
109	Network Organisation of Mycelial Fungi. , 2007, , 309-330.		36
110	The use of artificial media in fungal ecology. Fungal Ecology, 2018, 32, 87-91.	0.7	36
111	Fungal network responses to grazing. Fungal Genetics and Biology, 2010, 47, 522-530.	0.9	35
112	Continentalâ€scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. Journal of Biogeography, 2018, 45, 1942-1953.	1.4	35
113	Developmental and morphological responses of mycelial systems of Stropharia caerulea and Phanerochaete velutina to soil nutrient enrichment. New Phytologist, 1998, 138, 519-531.	3.5	34
114	Mycelial responses of Hypholoma fasciculare to collembola grazing: effect of inoculum age, nutrient status and resource quality. Mycological Research, 2005, 109, 927-935.	2.5	34
115	Microarray analysis of differential gene expression elicited in Trametes versicolor during interspecific mycelial interactions. Fungal Biology, 2010, 114, 646-660.	1.1	34
116	European mushroom assemblages are darker in cold climates. Nature Communications, 2019, 10, 2890.	5.8	34
117	Highly competitive fungi manipulate bacterial communities in decomposing beech wood (<i>Fagus) Tj ETQq1 1</i>	0.784314 1.3	rgBT /Overloc
118	Temporary parasitism of Coriolus spp. by Lenzites betulina: A strategy for domain capture in wood decay fungi. FEMS Microbiology Letters, 1987, 45, 53-58.	0.7	33
119	FUNGAL COMMUNITIES IN ATTACHED ASH BRANCHES. New Phytologist, 1987, 107, 143-154.	3.5	33
120	Wood decay and phosphorus translocation by the cord-forming basidiomycete Phanerochaete velutina: the significance of local nutrient supply. New Phytologist, 1998, 138, 607-617.	3.5	33
121	Training radial basis function neural networks: effects of training set size and imbalanced training sets. Journal of Microbiological Methods, 2000, 43, 33-44.	0.7	32
122	Mechanism of antibacterial activity of the white-rot fungus <i>Hypholoma fasciculare</i> colonizing wood. Canadian Journal of Microbiology, 2010, 56, 380-388.	0.8	32
123	Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions. FEMS Microbiology Ecology, 2012, 81, 419-426.	1.3	32
124	Strip ankering of beech (Fagus sylvatica): Pathology and distribution of symptomatic trees. New Phytologist, 1998, 140, 549-565.	3.5	31
125	Effects of dryâ€deposited sulphur dioxide on fungal decomposition of angiosperm tree leaf litter I. Changes in communities of fungal saprotrophs. New Phytologist, 1992, 122, 97-110.	3.5	30
126	Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data. Cytometry, 2001, 44, 210-217.	1.8	30

#	Article	IF	CITATIONS
127	Location, location, location: priority effects in wood decay communities may vary between sites. Environmental Microbiology, 2016, 18, 1954-1969.	1.8	29
128	Explaining European fungal fruiting phenology with climate variability. Ecology, 2018, 99, 1306-1315.	1.5	29
129	Translocation of soil-derived phosphorus in mycelial cord systems in relation to inoculum resource size. FEMS Microbiology Ecology, 1995, 17, 67-75.	1.3	28
130	Temporary phosphorus partitioning in mycelial systems of the cordâ€forming basidiomycete Phanerochaete velutina. New Phytologist, 1998, 140, 283-293.	3.5	28
131	Openâ€source data reveal how collectionsâ€based fungal diversity is sensitive to global change. Applications in Plant Sciences, 2019, 7, e01227.	0.8	28
132	Fungal communities in attached ash (Fraxinus excelsior) twigs. Transactions of the British Mycological Society, 1988, 91, 599-606.	0.6	27
133	Influence of Temperature on Germination of Primary and Secondary Conidia of Erynia neoaphidis (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology, 1995, 65, 132-138.	1.5	27
134	Localised invertebrate grazing moderates the effect of warming on competitive fungal interactions. Fungal Ecology, 2013, 6, 137-140.	0.7	27
135	Strip-cankering of beech (Fagus sylvatica): Pathology and distribution of symptomatic trees. New Phytologist, 1998, 140, 549-565.	3.5	27
136	Effects of dryâ€deposited sulphur dioxide on fungal decomposition of angiosperm tree leaf litter III. Decomposition rates and fungal respiration. New Phytologist, 1992, 122, 127-140.	3.5	26
137	Foraging patterns of Phallus impudicus, Phanerochaete laevis and Steccherinum fimbriatum between discontinuous resource units in soil. FEMS Microbiology Letters, 1988, 53, 291-298.	0.7	26
138	Differential extracellular enzyme production in colonies of Coriolus versicolor, Phlebia radiata and Phlebia rufa: effect of gaseous regime. Journal of General Microbiology, 1992, 138, 2589-2598.	2.3	25
139	Effect of the nematode Panagrellus redivivus on growth and enzyme production by Phanerochaete velutina and Stereum hirsutum. Mycological Research, 1992, 96, 1019-1028.	2.5	25
140	Mycelial foraging by Resinicium bicolor: interactive effects of resource quantity, quality and soil composition. FEMS Microbiology Ecology, 2002, 40, 135-142.	1.3	25
141	New approaches to investigating the function of mycelial networks. The Mycologist, 2005, 19, 11-17.	0.5	25
142	Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing. Mycological Research, 2006, 110, 985-993.	2.5	25
143	Chapter 1 Mycelial networks: Structure and dynamics. British Mycological Society Symposia Series, 2008, 28, 3-18.	0.5	25
144	Monokaryons and dikaryons of Trametes versicolor have similar combative, enzyme and decay ability. Fungal Ecology, 2010, 3, 347-356.	0.7	25

#	Article	IF	CITATIONS
145	Automated identification and characterisation of microbial populations using flow cytometry: the AIMS project. Scientia Marina, 2000, 64, 225-234.	0.3	25
146	Identification of basidiomycete spores by neural network analysis of flow cytometry data. Mycological Research, 1992, 96, 697-701.	2.5	24
147	Resource acquisition by the mycelial-cord-former Stropharia caerulea: effect of resource quantity and quality. FEMS Microbiology Ecology, 2006, 23, 195-205.	1.3	24
148	Chapter 7 Interactions between saprotrophic fungi. British Mycological Society Symposia Series, 2008, , 125-141.	0.5	24
149	Threesomes destabilise certain relationships: multispecies interactions between wood decay fungi in natural resources. FEMS Microbiology Ecology, 2017, 93, .	1.3	24
150	Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME Journal, 2020, 14, 380-388.	4.4	24
151	Microenvironmental Aspects of Xylem Defenses to Wood Decay Fungi. Springer Series in Wood Science, 1992, , 96-132.	0.8	24
152	Effects of dryâ€deposited sulphur dioxide on fungal decomposition of angiosperm tree leaf litter II. Chemical content of leaf litters. New Phytologist, 1992, 122, 111-125.	3.5	23
153	Translocation of 32P between wood resources recently colonised by mycelial cord systems of Phanerochaete velutina. FEMS Microbiology Ecology, 1994, 14, 201-212.	1.3	23
154	Sequential encounter of wood resources by mycelial cords of Phanerochaete velutina: effect on growth patterns and phosphorus allocation. New Phytologist, 1996, 133, 713-726.	3.5	23
155	Molecular and morphological discrimination of stipitate hydnoids in the genera Hydnellum and Phellodon. Mycological Research, 2007, 111, 761-777.	2.5	23
156	The fungus that came in from the cold: dry rot's pre-adapted ability to invade buildings. ISME Journal, 2018, 12, 791-801.	4.4	23
157	Development and extension of mycelial cords in soil at different temperatures and moisture contents. Mycological Research, 1989, 92, 383-391.	2.5	22
158	Fungal control of early-stage bacterial community development in decomposing wood. Fungal Ecology, 2019, 42, 100868.	0.7	22
159	The whiff of decay: Linking volatile production and extracellular enzymes to outcomes of fungal interactions at different temperatures. Fungal Ecology, 2019, 39, 336-348.	0.7	22
160	Fungal behaviour: a new frontier in behavioural ecology. Trends in Ecology and Evolution, 2021, 36, 787-796.	4.2	22
161	Fungal Communities and Formation of Heartwood Wings in Attached Oak Branches Undergoing Decay. Annals of Botany, 1981, 47, 271-274.	1.4	21
162	A view of disturbance and life strategies in fungi. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1988, 94, 3-11.	0.2	21

#	Article	IF	CITATIONS
163	Grazing alters network architecture during interspecific mycelial interactions. Fungal Ecology, 2008, 1, 124-132.	0.7	21
164	Interactions Between Fungi and Other Microbes. , 2016, , 337-360.		21
165	Interdependence of Primary Metabolism and Xenobiotic Mitigation Characterizes the Proteome of Bjerkandera adusta during Wood Decomposition. Applied and Environmental Microbiology, 2018, 84, .	1.4	21
166	Adaptive Biological Networks. Understanding Complex Systems, 2009, , 51-70.	0.3	21
167	Effect of soil and litter type on outgrowth patterns of mycelial systems of Phanerochaete velutina. FEMS Microbiology Ecology, 1996, 20, 195-204.	1.3	20
168	Evaluation of artificial neural networks for fungal identification, employing morphometric data from spores of Pestalotiopsis species. Mycological Research, 1998, 102, 975-984.	2.5	20
169	Mycelial dynamics during interactions between Stropharia caerulea and other cordâ€forming, saprotrophic basidiomycetes. New Phytologist, 2001, 151, 691-704.	3.5	20
170	Inhibitory effects of climate change on the growth and extracellular enzyme activities of a widespread Antarctic soil fungus. Global Change Biology, 2021, 27, 1111-1125.	4.2	20
171	LATENT DECAY FUNGI: THE HIDDEN FOE?. Arboricultural Journal, 1994, 18, 113-135.	0.3	19
172	Evaluation of the behavioural response of the flies Megaselia halterata and Lycoriella castanescens to different mushroom cultivation materials. Entomologia Experimentalis Et Applicata, 2005, 116, 73-81.	0.7	19
173	Cryptic taxa within European species of Hydnellum and Phellodon revealed by combined molecular and morphological analysis. Fungal Ecology, 2010, 3, 65-80.	0.7	19
174	Bottom-up determination of soil collembola diversity and population dynamics in response to interactive climatic factors. Oecologia, 2013, 173, 1083-1087.	0.9	19
175	Traitâ€dependent distributional shifts in fruiting of common British fungi. Ecography, 2018, 41, 51-61.	2.1	19
176	Fungi inhabiting oak twigs before and at fall. Transactions of the British Mycological Society, 1984, 82, 501-505.	0.6	18
177	A comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry data. Bioinformatics, 1994, 10, 285-294.	1.8	18
178	Dynamics of mycelial growth and phosphorus partitioning in developing mycelial cord systems ofPhanerochaete velutina: dependence on carbon availability. New Phytologist, 1999, 142, 325-334.	3.5	18
179	Soil water potential shifts: developmental responses and dependence on phosphorus translocation by the saprotrophic, cord-forming basidiomycete Phanerochaete velutina. Mycological Research, 2001, 105, 859-867.	2.5	18
180	Collembola foraging responses to interacting fungi. Ecological Entomology, 2009, 34, 125-132.	1.1	18

#	Article	IF	CITATIONS
181	Network traits predict ecological strategies in fungi. ISME Communications, 2022, 2, .	1.7	18
182	Development of Phanerochaete velutina mycelial cord systems: effect of encounter of multiple colonised wood resources. FEMS Microbiology Ecology, 1998, 25, 257-269.	1.3	17
183	Homokaryons are more combative than heterokaryons of Hericium coralloides. Fungal Ecology, 2008, 1, 40-48.	0.7	17
184	Contrasting Effects of Elevated Temperature and Invertebrate Grazing Regulate Multispecies Interactions between Decomposer Fungi. PLoS ONE, 2013, 8, e77610.	1.1	17
185	Sulphite and ph effects on co2 evolution from decomposing angiospermous and coniferous tree leaf litters. Soil Biology and Biochemistry, 1993, 25, 1513-1525.	4.2	16
186	Mycelial responses in heterogeneous environments: parallels with macroorganisms. , 2007, , 112-140.		16
187	Fungal decomposition of attached angiosperm twigs. IV. Effect of water potential on interactions between fungi on agar and in wood. New Phytologist, 1991, 117, 633-641.	3.5	15
188	Interspecific interactions between the rare tooth fungi Creolophus cirrhatus, Hericium erinaceus and H. coralloides and other wood decay species in agar and wood. Mycological Research, 2004, 108, 1447-1457.	2.5	15
189	New PCR assay detects rare tooth fungi in wood where traditional approaches fail. Mycological Research, 2005, 109, 1187-1194.	2.5	15
190	Grazing by collembola affects the outcome of interspecific mycelial interactions of cord-forming basidiomycetes. Fungal Ecology, 2011, 4, 42-55.	0.7	15
191	Effects of isopod population density on woodland decomposer microbial community function. Soil Biology and Biochemistry, 2014, 77, 112-120.	4.2	15
192	The Mycelium as a Network. , 0, , 335-367.		15
193	Ten principles for conservation translocations of threatened wood-inhabiting fungi. Fungal Ecology, 2020, 44, 100919.	0.7	15
194	INTERACTIONS BETWEEN MATING AND SOMATIC INCOMPATIBILITY IN THE BASIDIOMYCETE STEREUM HIRSUTUM. New Phytologist, 1985, 99, 473-483.	3.5	14
195	Outgrowth Patterns of Mycelial Cord-forming Basidiomycetes from and between Woody Resource Units in Soil. Microbiology (United Kingdom), 1986, 132, 203-211.	0.7	14
196	Invertebrate grazing affects nitrogen partitioning in the saprotrophic fungus Phanerochaete velutina. Soil Biology and Biochemistry, 2011, 43, 2338-2346.	4.2	14
197	Fineâ€scale spatiotemporal dynamics of fungal fruiting: prevalence, amplitude, range and continuity. Ecography, 2017, 40, 947-959.	2.1	14
198	Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. , 0, , 293-308.		14

#	Article	IF	CITATIONS
199	Congruency in fungal phenology patterns across dataset sources and scales. Fungal Ecology, 2018, 32, 9-17.	0.7	14
200	Neural Network Analysis of Flow Cytometry Data. , 1993, , 159-169.		14
201	Nutrient Movement and Mycelial Reorganization in Established Systems of Phanerochaete velutina, Following Arrival of Colonized Wood Resources. Microbial Ecology, 2005, 50, 141-151.	1.4	13
202	Chapter 14 Distribution patterns of wood-decay basidiomycetes at the landscape to global scale. British Mycological Society Symposia Series, 2008, , 263-275.	0.5	13
203	Emergent properties arising from spatial heterogeneity influence fungal community dynamics. Fungal Ecology, 2018, 33, 32-39.	0.7	13
204	The Interplay between Structure and Function in Fungal Networks. Topologica, 2008, 1, 004.	0.3	13
205	INTERNAL SPREAD OF FUNGI INOCULATED. New Phytologist, 1984, 98, 155-164.	3.5	12
206	A comparison of some neural and non-neural methods for identification of phytoplankton from flow cytomery data. Bioinformatics, 1996, 12, 9-18.	1.8	12
207	Fungi, Ecosystems, and Global Change. , 2016, , 361-400.		12
208	Fungal decomposition of attached angiosperm twigs. II. Moisture relations of twigs of ash (Fraxinus) Tj ETQq0	0 0 rgBT /C	overlock 10 Tf
209	Image analysis — a valuable tool for recording and analysising development of mycelial systems. The Mycologist, 1999, 13, 120-125.	0.5	11
210	Interactions with Humans and Other Animals. , 2016, , 293-336.		11
211	Inoculum volume effects on competitive outcome and wood decay rate of brown- and white-rot basidiomycetes. Fungal Ecology, 2020, 45, 100938.	0.7	11
212	Artificial neural networks for pattern recognition. , 1999, , 37-87.		11
213	Chapter 12 Wood Decay Communities in Angiosperm Wood. Mycology, 2017, , 169-190.	0.5	11
214	Fungal endophytes and origins of decay in beech (Fagus sylvatica) sapwood. Fungal Ecology, 2022, 59, 101161.	0.7	11
215	Encounter with New Resources Causes Polarized Growth of the Cord-Forming Basidiomycete Phanerochaete velutina on Soil. Microbial Ecology, 1998, 36, 372-382.	1.4	10
216	Imaging complex nutrient dynamics in mycelial networks. , 2007, , 3-21.		9

4

#	Article	IF	CITATIONS
217	Predicting fungal community dynamics driven by competition for space. Fungal Ecology, 2019, 41, 13-22.	0.7	9
218	Multiscale patterns of rarity in fungi, inferred from fruiting records. Global Ecology and Biogeography, 2019, 28, 1106-1117.	2.7	9
219	Attraction of fungus gnats to zones of intraspecific antagonism on agar plates. Transactions of the British Mycological Society, 1983, 81, 149-151.	0.6	8
220	Growth and interspecific interactions of the rare oak polypore Piptoporus quercinus. Mycological Research, 2004, 108, 189-197.	2.5	8
221	DECOMPOSITION OF SUPPRESSED OAK TREES IN EVEN-AGED PLANTATIONS. I. STAND CHARACTERISTICS AND DECAY OF AERIAL PARTS. New Phytologist, 1983, 93, 261-276.	3.5	7
222	Wood decomposition in an abandoned beech and oak coppiced woodland in SE England Ecography, 1984, 7, 229-238.	2.1	7
223	Sulphite and pH effects on CO2 evolution by fungi growing on decomposing coniferous needles. New Phytologist, 1996, 134, 155-166.	3.5	7
224	Sulphur dioxide effects on fungi growing on leaf litter and agar media. New Phytologist, 1996, 134, 167-176.	3.5	7
225	Repeated damage results in polarised development of foraging mycelial systems of Phanerochaete velutina. FEMS Microbiology Ecology, 1998, 26, 101-108.	1.3	7
226	The rare oak polypore Piptoporus quercinus: Population structure, spore germination and growth. Fungal Ecology, 2010, 3, 94-106.	0.7	7
227	The influence of migratory Paraburkholderia on growth and competition of wood-decay fungi. Fungal Ecology, 2020, 45, 100937.	0.7	7
228	Nonâ€ŧrophic effects of oribatid mites on cordâ€forming basidiomycetes in soil microcosms. Ecological Entomology, 2010, 35, 477-484.	1.1	6
229	DNA metabarcoding reveals host-specific communities of arthropods residing in fungal fruit bodies. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212622.	1.2	6
230	Legacies of invertebrate exclusion and tree secondary metabolites control fungal communities in dead wood. Molecular Ecology, 2022, 31, 3241-3253.	2.0	6
231	Wood decomposition in an abandoned beech and oak coppiced woodland in SE England Ecography, 1983, 6, 320-332.	2.1	5
232	Fungal host shifts: bias or biology?. Fungal Ecology, 2012, 5, 647-650.	0.7	5
233	Techniques for neural network identification of phytoplankton for the EurOPA flow cytometer. , 0, , .		4

ls diversity of mycorrhizal fungi important for ecosystem functioning?., 2005, , 216-235.

#	Article	IF	CITATIONS
235	Reply to Gange et al.: Climate-driven changes in the fungal fruiting season in the United Kingdom. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E335.	3.3	4
236	Genetics $\hat{a} \in $ Variation, Sexuality, and Evolution. , 2016, , 99-139.		4
237	Metabolic responses of two pioneer wood decay fungi to diurnally cycling temperature. Journal of Ecology, 2022, 110, 68-79.	1.9	4
238	Wood decomposition in an abandoned beech and oak coppiced woodland in SE England Ecography, 1984, 7, 218-228.	2.1	3
239	Effects of dry-deposited SO ₂ and sulphite on saprotrophic fungi and decomposition of tree leaf litter. , 1996, , 70-89.		3
240	Further evidence for fungivory in the Lower Devonian (Lochkovian) of the Welsh Borderland, UK. Palaontologische Zeitschrift, 2020, 94, 603-618.	0.8	3
241	Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species. FEMS Microbiology Letters, 1994, 118, 181-186.	0.7	3
242	Use of gradient plates to study spore germination with several microclimatic factors varying simultaneously. Mycological Research, 1989, 93, 106-109.	2.5	2
243	Secondary effects of SO2 pollution on leachate chemistry and decay of Scots pine and mixed angiospermous leaf litters. Soil Biology and Biochemistry, 1996, 28, 1373-1379.	4.2	2
244	Incorporating alternative interaction modes, forbidden links and traitâ€based mechanisms increases the minimum trait dimensionality of ecological networks. Methods in Ecology and Evolution, 2020, 11, 1663-1672.	2.2	2
245	Space and patchiness affects diversity–function relationships in fungal decay communities. ISME Journal, 2021, 15, 720-731.	4.4	2
246	Influence of European Beech (Fagales: Fagaceae) Rot Hole Habitat Characteristics on Invertebrate Community Structure and Diversity. Journal of Insect Science, 2021, 21, .	0.6	2
247	Identification of Marine Microalgae by Neural Network Analysis of Simple Descriptors of Flow Cytometric Pulse Shapes. , 2003, , 355-367.		2
248	Resource acquisition by the mycelial-cord-former Stropharia caerulea: effect of resource quantity and quality. FEMS Microbiology Ecology, 1997, 23, 195-205.	1.3	2
249	Making hollow trees: Inoculating living trees with wood-decay fungi for the conservation of threatened taxa - A guide for conservationists. Global Ecology and Conservation, 2022, 33, e01967.	1.0	2
250	Fractal analysis in studies of mycelium in soil. Developments in Soil Science, 2000, , 211-238.	0.5	1
251	Proportion estimation with confidence limits. Journal of Microbiological Methods, 2000, 43, 55-64.	0.7	1
252	Home is where the heart rot is: violet click beetle, Limoniscus violaceus (Müller, 1821), habitat attributes and volatiles. Insect Conservation and Diversity, 2021, 14, 155-162.	1.4	1

#	Article	IF	CITATIONS
253	Small scale variation in decay rate within logs one year after felling: Effect of fungal community structure and moisture content. FEMS Microbiology Letters, 1989, 62, 173-183.	0.7	1
254	Fungal ecology research in Britain: Decomposition ecology at university college, Cardiff. The Mycologist, 1987, 1, 168-IN8.	0.5	0
255	Fungi and ecological disturbance University of Sheffield, 21–23 September 1987. The Mycologist, 1988, 2, 140-141.	0.5	0
256	Modern methods and approaches to the study of fungal ecology. The Mycologist, 1990, 4, 44-45.	0.5	0
257	A novel gas-gradient mixing device for simultaneous production of a wide range of gas concentrations. Journal of Microbiological Methods, 1990, 11, 115-120.	0.7	0
258	BMS meeting. The Mycologist, 1992, 6, 156-157.	0.5	0
259	Effect of lead on growth of hypholoma fasciculare and phanerochaete velutina. Micron and Microscopica Acta, 1992, 23, 353-354.	0.2	0
260	Sulphite effects on microbial respiration from sycamore leaf litter and soil in the laboratory and field. International Journal of Environmental Studies, 2004, 61, 727-733.	0.7	0
261	Professor John William Gibson Cairney 1959–2012. Fungal Ecology, 2013, 6, 177.	0.7	0
262	Soils of war. New Scientist, 2014, 224, 42-45.	0.0	0
263	Identification of Marine Microalgae by Neural Network Analysis of Simple Descriptors of Flow Cytometric Pulse Shapes. , 2006, , 431-443.		0