Adrienne H K Roeder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/806467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MorphoGraphX: A platform for quantifying morphogenesis in 4D. ELife, 2015, 4, 05864.	2.8	389
2	A MAPKK Kinase Gene Regulates Extra-Embryonic Cell Fate in Arabidopsis. Cell, 2004, 116, 109-119.	13.5	381
3	Control of Fruit Patterning in Arabidopsis by INDEHISCENT. Cell, 2004, 116, 843-853.	13.5	381
4	The Role of the REPLUMLESS Homeodomain Protein in Patterning the Arabidopsis Fruit. Current Biology, 2003, 13, 1630-1635.	1.8	285
5	Variability in the Control of Cell Division Underlies Sepal Epidermal Patterning in Arabidopsis thaliana. PLoS Biology, 2010, 8, e1000367.	2.6	263
6	Why plants make puzzle cells, and how their shape emerges. ELife, 2018, 7, .	2.8	208
7	What determines cell size?. BMC Biology, 2012, 10, 101.	1.7	196
8	A Mechanical Feedback Restricts Sepal Growth and Shape in Arabidopsis. Current Biology, 2016, 26, 1019-1028.	1.8	187
9	Variable Cell Growth Yields Reproducible Organ Development through Spatiotemporal Averaging. Developmental Cell, 2016, 38, 15-32.	3.1	165
10	Comprehensive Analysis of <i>CLE</i> Polypeptide Signaling Gene Expression and Overexpression Activity in Arabidopsis. Plant Physiology, 2010, 154, 1721-1736.	2.3	154
11	Fruit Development in Arabidopsis. The Arabidopsis Book, 2006, 4, e0075.	0.5	153
12	Local Cues and Asymmetric Cell Divisions Underpin Body Plan Transitions in the Moss Physcomitrella patens. Current Biology, 2009, 19, 461-471.	1.8	148
13	Ploidy and Size at Multiple Scales in the Arabidopsis Sepal. Plant Cell, 2018, 30, 2308-2329.	3.1	137
14	CLAVATA Was a Genetic Novelty for the Morphological Innovation of 3D Growth in Land Plants. Current Biology, 2018, 28, 2365-2376.e5.	1.8	123
15	A novel role for the floral homeotic gene <i>APETALA2</i> during <i>Arabidopsis</i> fruit development. Development (Cambridge), 2011, 138, 5167-5176.	1.2	102
16	Cell cycle regulates cell type in the <i>Arabidopsis</i> sepal. Development (Cambridge), 2012, 139, 4416-4427.	1.2	92
17	Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal. ELife, 2017, 6, .	2.8	79
18	Computational Morphodynamics: A Modeling Framework to Understand Plant Growth. Annual Review of Plant Biology, 2010, 61, 65-87.	8.6	77

Adrienne H K Roeder

#	Article	IF	CITATIONS
19	Computational morphodynamics of plants: integrating development over space and time. Nature Reviews Molecular Cell Biology, 2011, 12, 265-273.	16.1	74
20	Heterogeneity and Robustness in Plant Morphogenesis: From Cells to Organs. Annual Review of Plant Biology, 2018, 69, 469-495.	8.6	72
21	A computational image analysis glossary for biologists. Development (Cambridge), 2012, 139, 3071-3080.	1.2	60
22	CUTIN SYNTHASE 2 Maintains Progressively Developing Cuticular Ridges in Arabidopsis Sepals. Molecular Plant, 2017, 10, 560-574.	3.9	58
23	Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling. Nature Plants, 2020, 6, 686-698.	4.7	48
24	Growth dynamics of the <i>Arabidopsis</i> fruit is mediated by cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25333-25342.	3.3	47
25	Stochasticity in plant cellular growth and patterning. Frontiers in Plant Science, 2014, 5, 420.	1.7	46
26	Variability and constancy in cellular growth of Arabidopsis sepals. Plant Physiology, 2015, 169, pp.00839.2015.	2.3	34
27	Themes and variations in cell type patterning in the plant epidermis. Current Opinion in Genetics and Development, 2015, 32, 55-65.	1.5	33
28	Fifteen compelling open questions in plant cell biology. Plant Cell, 2022, 34, 72-102.	3.1	27
29	Nitrate Defines Shoot Size through Compensatory Roles for Endoreplication and Cell Division in Arabidopsis thaliana. Current Biology, 2020, 30, 1988-2000.e3.	1.8	25
30	A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis. PLoS ONE, 2016, 11, e0146492.	1.1	24
31	Clones of cells switch from reduction to enhancement of size variability in <i>Arabidopsis</i> sepals. Development (Cambridge), 2017, 144, 4398-4405.	1.2	24
32	Endomembrane Trafficking Protein SEC24A Regulates Cell Size Patterning in Arabidopsis. Plant Physiology, 2014, 166, 1877-1890.	2.3	22
33	When and where plant cells divide: a perspective from computational modeling. Current Opinion in Plant Biology, 2012, 15, 638-644.	3.5	18
34	Transcriptomic Effects of the Cell Cycle Regulator LGO in Arabidopsis Sepals. Frontiers in Plant Science, 2016, 7, 1744.	1.7	18
35	Cytokinin and CLE signaling are highly intertwined developmental regulators across tissues and species. Current Opinion in Plant Biology, 2019, 51, 96-104.	3.5	18
36	Unraveling the Mystery of Double Flowers. Developmental Cell, 2001, 1, 4-6.	3.1	16

Adrienne H K Roeder

#	Article	IF	CITATIONS
37	Plant Development: Differential Growth Rates in Distinct Zones Shape an Ancient Plant Form. Current Biology, 2017, 27, R19-R21.	1.8	16
38	Cytokinin–CLAVATA cross-talk is an ancient mechanism regulating shoot meristem homeostasis in land plants. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116860119.	3.3	16
39	<i>Arabidopsis</i> sepals: A model system for the emergent process of morphogenesis. Quantitative Plant Biology, 2021, 2, .	0.8	15
40	Computational Analysis of Live Cell Images of the Arabidopsis thaliana Plant. Methods in Cell Biology, 2012, 110, 285-323.	0.5	13
41	Segmenting the sepal and shoot apical meristem of Arabidopsis thaliana. , 2010, 2010, 5338-42.		12
42	Use it or average it: stochasticity in plant development. Current Opinion in Plant Biology, 2018, 41, 8-15.	3.5	11
43	Plants are better engineers: the complexity of plant organ morphogenesis. Current Opinion in Genetics and Development, 2020, 63, 16-23.	1.5	10
44	Can the French flag and reaction–diffusion models explain flower patterning? Celebrating the 50th anniversary of the French flag model. Journal of Experimental Botany, 2020, 71, 2886-2897.	2.4	9
45	A Life Cycle for Modeling Biology at Different Scales. Frontiers in Plant Science, 2021, 12, 710590.	1.7	4
46	Development: Cell Polarity Is Coordinated over an Entire Plant Leaf. Current Biology, 2018, 28, R884-R887.	1.8	3
47	Small RNAs Turn Over a New Leaf as Morphogens. Developmental Cell, 2017, 43, 253-254.	3.1	2
48	Mutually reinforcing patterning mechanisms: authors' reply. Nature Reviews Molecular Cell Biology, 2011, 12, 533-533.	16.1	1
49	Back to the roots: A focus on plant cell biology. Plant Cell, 2022, 34, 1-3.	3.1	1
50	Editorial overview: Scaling development through the plant tree of life. Current Opinion in Plant Biology, 2019, 47, A1-A4.	3.5	0
51	Plant Morphogenesis: Mechanical Feedback Position Is Crucial in Organ Flattening. Current Biology, 2020, 30, R1268-R1270.	1.8	0
52	Cell cycle regulates cell type in the Arabidopsis sepal. Journal of Cell Science, 2012, 125, e1-e1.	1.2	0
53	Stepping on the molecular brake: Slowing down proliferation to allow differentiation. Developmental Cell, 2022, 57, 561-563.	3.1	0