Wei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8064643/publications.pdf

Version: 2024-02-01

84 papers 4,070 citations

34 h-index 62 g-index

84 all docs

84 docs citations

times ranked

84

6303 citing authors

#	Article	IF	CITATIONS
1	Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nature Communications, 2015, 6, 5834.	5.8	308
2	Covalently Combining Carbon Nanotubes with Anticancer Agent: Preparation and Antitumor Activity. ACS Nano, 2009, 3, 2740-2750.	7.3	243
3	Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles. Biomaterials, 2013, 34, 4667-4679.	5.7	195
4	Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. Journal of Controlled Release, 2015, 205, 206-217.	4.8	170
5	Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nature Biomedical Engineering, 2017, 1 , .	11.6	167
6	Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly($\hat{l}\mu$ -caprolactone) nanoparticles: Preparation and antitumor activity in vivo. Journal of Controlled Release, 2010, 142, 438-446.	4.8	150
7	Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials, 2013, 34, 1372-1382.	5.7	123
8	Tracking Cancer Metastasis Inâ€Vivo by Using an Iridiumâ€Based Hypoxiaâ€Activated Optical Oxygen Nanosensor. Angewandte Chemie - International Edition, 2015, 54, 8094-8099.	7.2	121
9	Effective PEGylation of Iron Oxide Nanoparticles for High Performance In Vivo Cancer Imaging. Advanced Functional Materials, 2011, 21, 1498-1504.	7.8	117
10	The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials, 2011, 32, 9525-9535.	5.7	110
11	Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules, 2018, 19, 1732-1745.	2.6	102
12	Nanospheres-Incorporated Implantable Hydrogel as a Trans-Tissue Drug Delivery System. ACS Nano, 2011, 5, 2520-2534.	7.3	100
13	Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles. Theranostics, 2016, 6, 1378-1392.	4.6	98
14	Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. Biomaterials, 2014, 35, 6439-6453.	5.7	93
15	Bioreducible heparin-based nanogel drug delivery system. Biomaterials, 2015, 39, 260-268.	5.7	93
16	Synthesis of Paclitaxel onjugated β yclodextrin Polyrotaxane and Its Antitumor Activity. Angewandte Chemie - International Edition, 2013, 52, 7272-7277.	7.2	83
17	Oligo(ethylene glycol)-Based Thermosensitive Dendrimers and Their Tumor Accumulation and Penetration. Journal of the American Chemical Society, 2014, 136, 3145-3155.	6.6	83
18	Synthesis of Hydroxypropylcellulose-poly(acrylic acid) Particles with Semi-Interpenetrating Polymer Network Structure. Biomacromolecules, 2008, 9, 2609-2614.	2.6	77

#	Article	IF	Citations
19	The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials, 2014, 35, 866-878.	5.7	75
20	The development of phosphorescent probes for <i>in vitro</i> and <i>in vivo</i> bioimaging. Biomaterials Science, 2021, 9, 285-300.	2.6	74
21	Delivery of doxorubicin in vitro and in vivo using bio-reductive cellulose nanogels. Biomaterials Science, 2014, 2, 220-232.	2.6	59
22	Degradation and Degradation-Induced Re-Assembly of PVP-PCL Micelles. Biomacromolecules, 2010, 11, 481-488.	2.6	55
23	Tumor Accumulation, Penetration, and Antitumor Response of Cisplatin-Loaded Gelatin/Poly(acrylic) Tj ETQq $1\ 1$	0.784314	rgBT Overlo
24	Enhancing tumor penetration and targeting using size-minimized and zwitterionic nanomedicines. Journal of Controlled Release, 2016, 237, 115-124.	4.8	52
25	Alginic Acid Nanoparticles Prepared through Counterion Complexation Method as a Drug Delivery System. ACS Applied Materials & Interfaces, 2012, 4, 5325-5332.	4.0	47
26	Redox Responsive Hyaluronic Acid Nanogels for Treating RHAMM (CD168) Over-expressive Cancer, both Primary and Metastatic Tumors. Theranostics, 2017, 7, 1719-1734.	4.6	47
27	Size- and pathotropism-driven targeting and washout-resistant effects of boronic acid-rich protein nanoparticles for liver cancer regression. Journal of Controlled Release, 2013, 168, 1-9.	4.8	45
28	Phenylboronic Acid Modification Augments the Lysosome Escape and Antitumor Efficacy of a Cylindrical Polymer Brush-Based Prodrug. Journal of the American Chemical Society, 2021, 143, 20927-20938.	6.6	45
29	Responsive boron biomaterials and their biomedical applications. Science China Chemistry, 2020, 63, 648-664.	4.2	43
30	Intelligently Targeted Drug Delivery and Enhanced Antitumor Effect by Gelatinase-Responsive Nanoparticles. PLoS ONE, 2013, 8, e69643.	1.1	39
31	A Facile Strategy for Constructing Boronâ€Rich Polymer Nanoparticles via a Boronic Acidâ€Related Reaction. Macromolecular Rapid Communications, 2011, 32, 534-539.	2.0	38
32	Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles. International Journal of Nanomedicine, 2012, 7, 281.	3.3	38
33	Supramolecular Amphiphilic Polymer-Based Micelles with Seven-Armed Polyoxazoline Coating for Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5768-5777.	4.0	38
34	Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy. Nanoscale, 2012, 4, 2306.	2.8	37
35	Second Near-Infrared Aggregation-Induced Emission Fluorophores with Phenothiazine Derivatives as the Donor and 6,7-Diphenyl-[1,2,5]Thiadiazolo[3,4-g]Quinoxaline as the Acceptor for In Vivo Imaging. ACS Applied Materials & Diterfaces, 2020, 12, 20281-20286.	4.0	36
36	Fluorescent Micelles Based on Star Amphiphilic Copolymer with a Porphyrin Core for Bioimaging and Drug Delivery. Macromolecular Bioscience, 2012, 12, 83-92.	2.1	35

#	Article	IF	Citations
37	Ultra-high relaxivity iron oxide nanoparticles confined in polymer nanospheres for tumor MR imaging. Journal of Materials Chemistry B, 2015, 3, 5702-5710.	2.9	35
38	Platinum-Incorporating Poly(<i>N</i> -vinylpyrrolidone)-poly(aspartic acid) Pseudoblock Copolymer Nanoparticles for Drug Delivery. Biomacromolecules, 2015, 16, 2059-2071.	2.6	35
39	Improving Quantum Yield of a NIRâ€II Dye by Phenylazo Group. Advanced Healthcare Materials, 2020, 9, e1901470.	3.9	34
40	Non-enzymatic and enzymatic degradation of poly(ethylene glycol)-b-poly(É>-caprolactone) diblock copolymer micelles in aqueous solution. Polymer, 2008, 49, 5513-5519.	1.8	33
41	Drug-loaded pseudo-block copolymer micelles with a multi-armed star polymer as the micellar exterior. Nanoscale, 2015, 7, 12572-12580.	2.8	33
42	Shape Effects of Cylindrical versus Spherical Unimolecular Polymer Nanomaterials on in Vitro and in Vivo Behaviors. Research, 2019, 2019, 2391486.	2.8	33
43	Nanoscaled boron-containing delivery systems and therapeutic agents for cancer treatment. Nanomedicine, 2015, 10, 1149-1163.	1.7	31
44	The effects of poly(zwitterions)s versus poly(ethylene glycol) surface coatings on the biodistribution of protein nanoparticles. Biomaterials Science, 2016, 4, 1351-1360.	2.6	30
45	Cellular entry fashion of hollow milk protein spheres. Soft Matter, 2011, 7, 11526.	1.2	27
46	Multifold enhanced T2 relaxation of ZnFe2O4 nanoparticles by jamming them inside chitosan nanospheres. Journal of Materials Chemistry, 2012, 22, 5684.	6.7	27
47	Phenothiazine versus Phenoxazine: Structural Effects on the Photophysical Properties of NIR-II AIE Fluorophores. ACS Applied Materials & Interfaces, 2020, 12, 43466-43473.	4.0	26
48	Synthesis and Self-Assembly of a Nanoscaled Multiarm Polymer Terminated by \hat{l}^2 -Cyclodextrin. ACS Macro Letters, 2013, 2, 82-85.	2.3	21
49	Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. Science China Materials, 2018, 61, 1404-1419.	3.5	21
50	Thermo and pH dual-responsive drug-linked pseudo-polypeptide micelles with a comb-shaped polymer as a micellar exterior. Polymer Chemistry, 2017, 8, 6886-6894.	1.9	20
51	Nanoscale vesicles assembled from non-planar cyclic molecules for efficient cell penetration. Biomaterials Science, 2019, 7, 2552-2558.	2.6	20
52	Phenylboronic acid-incorporated elastin-like polypeptide nanoparticle drug delivery systems. Polymer Chemistry, 2017, 8, 2105-2114.	1.9	19
53	Responsive hyaluronic acid-gold cluster hybrid nanogel theranostic systems. Biomaterials Science, 2021, 9, 1363-1373.	2.6	19
54	NIR-II Fluorophore with Dithienylethene as an Electron Donor for Fluorescence/Photoacoustic Dual-Model Imaging and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54830-54839.	4.0	19

#	Article	IF	Citations
55	In vitro and in vivo Antitumor Activity of Doxorubicinâ€Loaded Alginicâ€Acidâ€Based Nanoparticles. Macromolecular Bioscience, 2012, 12, 1326-1335.	2.1	18
56	Synthesis of <i>β</i> à€Cyclodextrinâ€[60]fullerene Conjugate and Its DNA Cleavage Performance. Chinese Journal of Chemistry, 2014, 32, 78-84.	2.6	18
57	Synthesis and biological properties of water-soluble polyphenylthiophene brushes with poly(ethylene) Tj ETQq1	1 0,78431 1.9	4 rgBT /Over
58	Carbamoylmannose enhances the tumor targeting ability of supramolecular nanoparticles formed through host–guest complexation of a pair of homopolymers. Journal of Materials Chemistry B, 2017, 5, 834-848.	2.9	17
59	Length effects of cylindrical polymer brushes on their <i>in vitro</i> and <i>in vivo</i> properties. Biomaterials Science, 2019, 7, 5124-5131.	2.6	17
60	Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	16
61	Doxorubicin-loaded boron-rich polymer nanoparticles for orthotopically implanted liver tumor treatment. Chinese Journal of Polymer Science (English Edition), 2013, 31, 778-786.	2.0	16
62	Synthesis and Biological Properties of Porphyrin-Containing Polymeric Micelles with Different Sizes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5794-5803.	4.0	16
63	The in vitro and in vivo properties of ringlike polymer brushes. Nano Today, 2021, 41, 101293.	6.2	16
64	Modification of \hat{l}_{\pm} -Cyclodextrin Polyrotaxanes by ATRP for Conjugating Drug and Prolonging Blood Circulation. ACS Biomaterials Science and Engineering, 2018, 4, 1963-1968.	2.6	14
65	Target-Amplified Drug Delivery of Polymer Micelles Bearing Staudinger Ligation. ACS Applied Materials & Interfaces, 2019, 11, 32697-32705.	4.0	14
66	NIR-II Dye-Labeled Cylindrical Polymer Brushes for in Vivo Imaging. ACS Macro Letters, 2019, 8, 1623-1628.	2.3	13
67	Synthesis of drug-crosslinked polymer nanoparticles. Polymer Chemistry, 2015, 6, 1703-1713.	1.9	12
68	Fluorination and Betaine Modification Augment the Blood–Brain Barrierâ€Crossing Ability of Cylindrical Polymer Brushes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
69	Spontaneous Formation of Giant Polymer Vesicles through a Nucleation and Growth Pathway. Chemistry - an Asian Journal, 2012, 7, 1875-1880.	1.7	9
70	Synthesis, Cellular Uptake, and Biodistribution of Wheyâ€Rich Nanoparticles. Macromolecular Bioscience, 2014, 14, 1149-1159.	2.1	9
71	Cisplatinâ€Rich Polyoxazoline–Poly(aspartic acid) Supramolecular Nanoparticles. Macromolecular Bioscience, 2017, 17, 1700206.	2.1	9
72	Dendritic phospholipid-based drug delivery systems. Biomaterials Science, 2018, 6, 774-778.	2.6	8

#	Article	IF	CITATION
73	Multifusion-induced wall-super-thick giant multilamellar vesicles. Chemical Communications, 2012, 48, 7079.	2.2	7
74	Nanoscale Crystalline Sheets and Vesicles Assembled from Nonplanar Cyclic ⟨i⟩Ï€⟨ i⟩ -Conjugated Molecules. Research, 2019, 2019, 1953926.	2.8	6
75	An Orthogonal Protection Strategy for Synthesizing Scaffold-Modifiable Dendrons and Their Application in Drug Delivery. ACS Central Science, 2022, 8, 258-267.	5.3	6
76	Synthesis of novel gelatin/poly(acrylic acid) nanorods via the self-assembly of nanospheres. Science China Chemistry, 2011, 54, 392-396.	4.2	5
77	A Dendronâ€Based Fluorescence Turnâ€On Probe for Tumor Detection. Chemistry - A European Journal, 2020, 26, 13022-13030.	1.7	5
78	Semiconductor Polymer with Strong NIR-II Absorption for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Bio Materials, 2022, , .	2.3	5
79	Effects of iRGD conjugation density on the in vitro and in vivo properties of cylindrical polymer brushes. Biomaterials Science, 2022, , .	2.6	4
80	Gold Encapsulated Chitosanâ€Poly(acrylic acid) Hybrid Hollow Nanospheres. Macromolecular Bioscience, 2009, 9, 1272-1280.	2.1	3
81	Polymer-assisted nanoparticulate contrast-enhancing materials. Science China Chemistry, 2010, 53, 479-486.	4.2	3
82	A Practical Strategy for Constructing Nanodrugs Using Carbon Nanotubes as Carriers. Methods in Molecular Biology, 2011, 751, 565-582.	0.4	3
83	Long-Circulating Polymeric Drug Nanocarriers. ACS Symposium Series, 2012, , 27-36.	0.5	2
84	Fluorination and Betaine Modification Augment the Bloodâ€Brain Barrierâ€Crossing Ability of Cylindrical Polymer Brushes. Angewandte Chemie, 0, , .	1.6	0