Xing Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8064603/publications.pdf

Version: 2024-02-01

623734 839539 21 784 14 18 h-index citations g-index papers 21 21 21 392 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation. Journal of Power Sources, 2020, 462, 228132.	7.8	79
2	State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives. IScience, 2021, 24, 103265.	4.1	78
3	A Flexible State-of-Health Prediction Scheme for Lithium-Ion Battery Packs With Long Short-Term Memory Network and Transfer Learning. IEEE Transactions on Transportation Electrification, 2021, 7, 2238-2248.	7.8	76
4	Online diagnosis of state of health for lithium-ion batteries based on short-term charging profiles. Journal of Power Sources, 2020, 471, 228478.	7.8	71
5	A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization. Energy, 2020, 204, 117957.	8.8	65
6	Online State of Health Estimation for Lithium-Ion Batteries Based on Support Vector Machine. Applied Sciences (Switzerland), 2018, 8, 925.	2.5	62
7	An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation. Energy, 2020, 207, 118262.	8.8	56
8	Stage of Charge Estimation of Lithium-Ion Battery Packs Based on Improved Cubature Kalman Filter With Long Short-Term Memory Model. IEEE Transactions on Transportation Electrification, 2021, 7, 1271-1284.	7.8	54
9	Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. Energy, 2021, 228, 120630.	8.8	54
10	State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning. Journal of Energy Storage, 2021, 37, 102494.	8.1	49
11	Optimal charging strategy design for lithiumâ€ion batteries considering minimization of temperature rise and energy loss. International Journal of Energy Research, 2019, 43, 4344-4358.	4.5	31
12	<scp>State</scp> of charge estimation framework for lithiumâ€ion batteries based on square root cubature Kalman filter under wide operation temperature range. International Journal of Energy Research, 2021, 45, 5586-5601.	4.5	26
13	Alternative combined co-estimation of state of charge and capacity for lithium-ion batteries in wide temperature scope. Energy, 2022, 244, 123236.	8.8	19
14	On-board state of health estimation for lithium-ion batteries based on random forest., 2018,,.		17
15	Operation Efficiency Optimization for Permanent Magnet Synchronous Motor Based on Improved Particle Swarm Optimization. IEEE Access, 2021, 9, 777-788.	4.2	15
16	LiFePO4 battery charging strategy design considering temperature rise minimization. Journal of Renewable and Sustainable Energy, 2017, 9, .	2.0	11
17	Model-Based Adaptive Joint Estimation of the State of Charge and Capacity for Lithium–lon Batteries in Their Entire Lifespan. Energies, 2020, 13, 1410.	3.1	7
18	Charging strategy design of lithium-ion batteries for energy loss minimization based on minimum principle., 2017,,.		6

#	Article	IF	CITATIONS
19	Protocol for state-of-health prediction of lithium-ion batteries based on machine learning. STAR Protocols, 2022, 3, 101272.	1.2	4
20	State of Charge Estimation for Lithium-Ion Battery Based on Hybrid Compensation Modeling and Adaptive H-Infinity Filter. IEEE Transactions on Transportation Electrification, 2023, 9, 945-957.	7.8	3
21	An optimal charging algorithm for lithium-ion batteries considering temperature rise minimization., 2017,,.		1