List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8064367/publications.pdf Version: 2024-02-01

REDNADO THÃ OBALIO

#	Article	IF	CITATIONS
1	Preempting Bronchopulmonary Dysplasia: Time to Focus on the Placenta?. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 8-9.	2.9	6
2	Definition and Characteristics of Mesenchymal Stromal Cells in Preclinical and Clinical Studies: A Scoping Review. Stem Cells Translational Medicine, 2022, 11, 44-54.	3.3	16
3	The comprehensive transcriptome of human ductus arteriosus smooth muscle cells (hDASMC). Data in Brief, 2022, 40, 107736.	1.0	1
4	Pulmonary Magnetic Resonance Imaging of Ex-preterm Children with/without Bronchopulmonary Dysplasia. Annals of the American Thoracic Society, 2022, , .	3.2	5
5	Single-Cell RNA Sequencing-Based Characterization of Resident Lung Mesenchymal Stromal Cells in Bronchopulmonary Dysplasia. Stem Cells, 2022, 40, 479-492.	3.2	9
6	The differentiation of embryonic stem cells and induced pluripotent stem cells into airway and alveolar epithelial cells. , 2022, , 95-127.		0
7	A systematic approach to enhance transparency in mesenchymal stromal cell research. Cytotherapy, 2022, 24, 674-675.	0.7	1
8	Pulmonary and Neurologic Effects of Mesenchymal Stromal Cell Extracellular Vesicles in a Multifactorial Lung Injury Model. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1186-1201.	5.6	15
9	Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Neonatal Lung Disease: Tiny Particles, Major Promise, Rigorous Requirements for Clinical Translation. Cells, 2022, 11, 1176.	4.1	9
10	The elusive pulmonary neuroendocrine cell: How rare diseases may help solving common diseases. Developmental Cell, 2022, 57, 837-838.	7.0	1
11	Benefits and obstacles to cell therapy in neonates: The INCuBAToR (Innovative Neonatal Cellular) Tj ETQq1 1 0.78 Translational Medicine, 2021, 10, 968-975.	84314 rgB⁻ 3.3	「/Overlock 10
12	Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nature Communications, 2021, 12, 1565.	12.8	89
13	Fully automated estimation of the mean linear intercept in histopathology images of mouse lung tissue. Journal of Medical Imaging, 2021, 8, 027501.	1.5	3
14	Insights into the mechanisms of alveolarization - Implications for lung regeneration and cell therapies. Seminars in Fetal and Neonatal Medicine, 2021, , 101243.	2.3	2
15	Pathogenesis of bronchopulmonary dysplasia. , 2021, , 50-67.		4
16	The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria. Genomics, 2021, 113, 3128-3140.	2.9	7
17	Characterization of a New Monocrotaline Rat Model to Study Chronic Neonatal Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 331-334.	2.9	3
18	Mesenchymal stromal cell extracellular vesicles as therapy for acute and chronic respiratory diseases: A metaâ€analysis. Journal of Extracellular Vesicles, 2021, 10, e12141.	12.2	31

#	Article	IF	CITATIONS
19	Characterization of the innate immune response in a novel murine model mimicking bronchopulmonary dysplasia. Pediatric Research, 2021, 89, 803-813.	2.3	5
20	Surrogate Humane Endpoints in Small Animal Models of Acute Lung Injury: A Modified Delphi Consensus Study of Researchers and Laboratory Animal Veterinarians*. Critical Care Medicine, 2021, 49, 311-323.	0.9	7
21	Establishment of a consensus definition for mesenchymal stromal cells (MSC) and reporting guidelines for clinical trials of MSC therapy: a modified Delphi study protocol. BMJ Open, 2021, 11, e054740.	1.9	6
22	Cell Therapy with the Cell or Without the Cell for Premature Infants? Time Will Tell. American Journal of Respiratory and Critical Care Medicine, 2021, , .	5.6	0
23	Stem cell therapy for preventing neonatal diseases in the 21st century: Current understanding and challenges. Pediatric Research, 2020, 87, 265-276.	2.3	46
24	Effect of oxygen saturation targets on the incidence of bronchopulmonary dysplasia and duration of respiratory supports in extremely preterm infants. Paediatrics and Child Health, 2020, 25, 173-179.	0.6	5
25	Late Rescue Therapy with Cord-Derived Mesenchymal Stromal Cells for Established Lung Injury in Experimental Bronchopulmonary Dysplasia. Stem Cells and Development, 2020, 29, 364-371.	2.1	14
26	Are all stem cells equal? Systematic review, evidence map, and meta-analyses of preclinical stem cell-based therapies for bronchopulmonary dysplasia. Stem Cells Translational Medicine, 2020, 9, 158-168.	3.3	30
27	A lung tropic AAV vector improves survival in a mouse model of surfactant B deficiency. Nature Communications, 2020, 11, 3929.	12.8	37
28	Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. The Cochrane Library, 2020, 2020, CD013202.	2.8	16
29	Closing gaps, opening doors: an experimental collaboration in stem cell intervention. Molecular Biology Reports, 2020, 47, 4105-4108.	2.3	Ο
30	How to introduce MSC-based therapy for the developing lung safely into clinical care?. Pediatric Research, 2020, 88, 365-368.	2.3	5
31	Lifetime patient outcomes and healthcare utilization for Bronchopulmonary dysplasia (BPD) and extreme preterm infants: a microsimulation study. BMC Pediatrics, 2020, 20, 136.	1.7	17
32	Stem Cells for Extreme Prematurity. American Journal of Perinatology, 2019, 36, S68-S73.	1.4	8
33	So You Want to Give Stem Cells to Babies? Neonatologists and Parents' Views to Optimize Clinical Trials. Journal of Pediatrics, 2019, 210, 41-47.e1.	1.8	16
34	Bronchopulmonary dysplasia. Nature Reviews Disease Primers, 2019, 5, 78.	30.5	541
35	Factors Impacting Physician Recommendation for Tracheostomy Placement in Pediatric Prolonged Mechanical Ventilation: A Cross-Sectional Survey on Stated Practice*. Pediatric Critical Care Medicine, 2019, 20, e423-e431.	0.5	14
36	Oxygen Disrupts Human Fetal Lung Mesenchymal Cells. Implications for Bronchopulmonary Dysplasia. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 592-600.	2.9	30

#	Article	IF	CITATIONS
37	Stem Cell Therapy in Neonates—the Time Has (Almost) Come. , 2019, , 1-18.		0
38	Preventing bronchopulmonary dysplasia: new tools for an old challenge. Pediatric Research, 2019, 85, 432-441.	2.3	35
39	Target oxygen saturation and development of pulmonary hypertension and increased pulmonary vascular resistance in preterm infants. Pediatric Pulmonology, 2019, 54, 73-81.	2.0	15
40	Endothelial cells of different organs exhibit heterogeneity in von Willebrand factor expression in response to hypoxia. Atherosclerosis, 2019, 282, 1-10.	0.8	26
41	Cell-based therapy for bronchopulmonary dysplasia in preterm infants. Canadian Journal of Physiology and Pharmacology, 2019, 97, 232-234.	1.4	4
42	Novel therapeutics for bronchopulmonary dysplasia. Current Opinion in Pediatrics, 2018, 30, 378-383.	2.0	17
43	Mesenchymal Stromal Cell Therapy for Respiratory Complications of Extreme Prematurity. American Journal of Perinatology, 2018, 35, 566-569.	1.4	7
44	Bronchopulmonary Dysplasia: Executive Summary of a Workshop. Journal of Pediatrics, 2018, 197, 300-308.	1.8	516
45	Human induced pluripotent stem cell–derived lung progenitor and alveolar epithelial cells attenuate hyperoxia-induced lung injury. Cytotherapy, 2018, 20, 108-125.	0.7	46
46	Stem cell biology and regenerative medicine for neonatal lung diseases. Pediatric Research, 2018, 83, 291-297.	2.3	25
47	The Therapeutic Potential of Stem Cells for Bronchopulmonary Dysplasia: "It's About Time―or "Not s Fast―?. Current Pediatric Reviews, 2018, 14, 227-238.	⁰ 0.8	16
48	Endothelial colony-forming cell therapy for heart morphological changes after neonatal high oxygen exposure in rats, a model of complications of prematurity. Physiological Reports, 2018, 6, e13922.	1.7	3
49	Nanotherapies for micropreemies: Stem cells and the secretome in bronchopulmonary dysplasia. Seminars in Perinatology, 2018, 42, 453-458.	2.5	24
50	Stem cell-based therapies in neonatology: a new hope. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2018, 103, F583-F588.	2.8	11
51	Impaired Angiogenic Supportive Capacity and Altered Gene Expression Profile of Resident CD146+ Mesenchymal Stromal Cells Isolated from Hyperoxia-Injured Neonatal Rat Lungs. Stem Cells and Development, 2018, 27, 1109-1124.	2.1	25
52	Endothelial Colonyâ€Forming Cells in Young Adults Born Preterm: A Novel Link Between Neonatal Complications and Adult Risks for Cardiovascular Disease. Journal of the American Heart Association, 2018, 7, .	3.7	27
53	Human Umbilical Cord Mesenchymal Stromal Cells Improve Survival and Bacterial Clearance in Neonatal Sepsis in Rats. Stem Cells and Development, 2017, 26, 1054-1064.	2.1	38
54	Bronchopulmonary Dysplasia: Where HaveÂAll the Stem Cells Gone?. Chest, 2017, 152, 1043-1052.	0.8	38

#	Article	IF	CITATIONS
55	Can We Cure Bronchopulmonary Dysplasia?. Journal of Pediatrics, 2017, 191, 12-14.	1.8	11
56	Mesenchymal Stromal Cell Therapy in Bronchopulmonary Dysplasia: Systematic Review and Meta-Analysis of Preclinical Studies. Stem Cells Translational Medicine, 2017, 6, 2079-2093.	3.3	113
57	Mesenchymal stem cells for the prevention and treatment of bronchopulmonary dysplasia in preterm infants. The Cochrane Library, 2017, 2017, CD011932.	2.8	37
58	Cell-based therapies for neonatal lung disease. Cell and Tissue Research, 2017, 367, 737-745.	2.9	17
59	Endothelial Progenitor Cells as Prognostic Markers of Preterm Birth-Associated Complications. Stem Cells Translational Medicine, 2017, 6, 7-13.	3.3	26
60	Impaired Lung Development and Neonatal Lung Diseases: A Never-Ending (Vascular) Story. Journal of Pediatrics, 2017, 180, 11-13.	1.8	3
61	Long-term follow-up of cardiorespiratory outcomes in children born extremely preterm: Recommendations from a Canadian consensus workshop. Paediatrics and Child Health, 2017, 22, 75-79.	0.6	9
62	Mesenchymal Stromal Cell-Based Therapies for Chronic Lung Disease of Prematurity. American Journal of Perinatology, 2016, 33, 1043-1049.	1.4	7
63	Unique Aspects of the Developing Lung Circulation: Structural Development and Regulation of Vasomotor Tone. Pulmonary Circulation, 2016, 6, 407-425.	1.7	39
64	Cell Therapy for Bronchopulmonary Dysplasia: Promises and Perils. Paediatric Respiratory Reviews, 2016, 20, 33-41.	1.8	20
65	Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells. Stem Cells Translational Medicine, 2016, 5, 291-300.	3.3	22
66	Isolation of CD146 ⁺ Resident Lung Mesenchymal Stromal Cells from Rat Lungs. Journal of Visualized Experiments, 2016, , .	0.3	5
67	In Reply. Stem Cells Translational Medicine, 2016, 5, 703-703.	3.3	0
68	Impact of bronchopulmonary dysplasia on brain and retina. Biology Open, 2016, 5, 475-483.	1.2	19
69	Preterm birth: risk factor for early-onset chronic diseases. Cmaj, 2016, 188, 736-746.	2.0	94
70	Not another steroid trial: early low-dose hydrocortisone in preterm infants. Lancet, The, 2016, 387, 1793-1794.	13.7	3
71	Mesenchymal Stromal Cells in Animal Bleomycin Pulmonary Fibrosis Models: A Systematic Review. Stem Cells Translational Medicine, 2015, 4, 1500-1510.	3.3	94
72	Stem Cells and Their Mediators ââ,¬â€œ Next Generation Therapy for Bronchopulmonary Dysplasia. Frontiers in Medicine, 2015, 2, 50.	2.6	25

#	Article	IF	CITATIONS
73	The isolation and culture of endothelial colony-forming cells from human and rat lungs. Nature Protocols, 2015, 10, 1697-1708.	12.0	94
74	Bronchopulmonary Dysplasia and Chronic Lung Disease. Clinics in Perinatology, 2015, 42, 889-910.	2.1	16
75	Lung Vasculogenesis and Angiogenesis. Pancreatic Islet Biology, 2015, , 25-41.	0.3	0
76	Metabolomics of prematurity: analysis of patterns of amino acids, enzymes, and endocrine markers by categories of gestational age. Pediatric Research, 2014, 75, 367-373.	2.3	39
77	Animal models of bronchopulmonary dysplasia. The term rat models. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L948-L958.	2.9	172
78	Lung Mesenchymal Stromal Cells in Development and Disease: To Serve and Protect?. Antioxidants and Redox Signaling, 2014, 21, 1849-1862.	5.4	43
79	Doppler parameters of fetal lung hypoplasia and impact ofÂsildenafil. American Journal of Obstetrics and Gynecology, 2014, 211, 263.e1-263.e8.	1.3	20
80	Stem cell–based therapy for neonatal lung disease: it is in the juice. Pediatric Research, 2014, 75, 2-7.	2.3	82
81	Stem cells in animal asthma models: a systematic review. Cytotherapy, 2014, 16, 1629-1642.	0.7	19
82	Existence, Functional Impairment, and Lung Repair Potential of Endothelial Colony-Forming Cells in Oxygen-Induced Arrested Alveolar Growth. Circulation, 2014, 129, 2144-2157.	1.6	139
83	Advances in bronchopulmonary dysplasia. Expert Review of Respiratory Medicine, 2014, 8, 327-338.	2.5	35
84	Exogenous Hydrogen Sulfide (H2S) Protects Alveolar Growth in Experimental O2-Induced Neonatal Lung Injury. PLoS ONE, 2014, 9, e90965.	2.5	44
85	Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax, 2013, 68, 475-484.	5.6	217
86	The Axonal Guidance Cue Semaphorin 3C Contributes to Alveolar Growth and Repair. PLoS ONE, 2013, 8, e67225.	2.5	33
87	Airway Delivery of Soluble Factors from Plastic-Adherent Bone Marrow Cells Prevents Murine Asthma. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 207-216.	2.9	70
88	Preconditioning Enhances the Paracrine Effect of Mesenchymal Stem Cells in Preventing Oxygen-Induced Neonatal Lung Injury in Rats. Stem Cells and Development, 2012, 21, 2789-2797.	2.1	152
89	Exosomes. Circulation, 2012, 126, 2553-2555.	1.6	46
90	Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L967-L977.	2.9	286

#	Article	IF	CITATIONS
91	Activation of Akt Protects Alveoli from Neonatal Oxygen-Induced Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 146-154.	2.9	47
92	Update in Pediatric Lung Disease 2010. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1477-1481.	5.6	6
93	Patent ductus arteriosus in premature infants: A never-closing act. Paediatrics and Child Health, 2010, 15, 267-270.	0.6	13
94	Adrenomedullin Promotes Lung Angiogenesis, Alveolar Development, and Repair. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 152-160.	2.9	48
95	L-Citrulline Attenuates Arrested Alveolar Growth and Pulmonary Hypertension in Oxygen-Induced Lung Injury in Newborn Rats. Pediatric Research, 2010, 68, 519-525.	2.3	74
96	Airway Delivery of Mesenchymal Stem Cells Prevents Arrested Alveolar Growth in Neonatal Lung Injury in Rats. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1131-1142.	5.6	418
97	Pulmonary hypertension associated with congenital diaphragmatic hernia. Cardiology in the Young, 2009, 19, 49-53.	0.8	19
98	A Central Role for Oxygen-Sensitive K+ Channels and Mitochondria in the Specialized Oxygen-Sensing System. Novartis Foundation Symposium, 2008, , 157-175.	1.1	24
99	Developmental Absence of the O2 Sensitivity of L-Type Calcium Channels in Preterm Ductus Arteriosus Smooth Muscle Cells Impairs O2 Constriction Contributing to Patent Ductus Arteriosus. Pediatric Research, 2008, 63, 176-181.	2.3	49
100	Angiogenesis in Lung Development, Injury and Repair: Implications for Chronic Lung Disease of Prematurity. Neonatology, 2007, 91, 291-297.	2.0	123
101	Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 978-985.	5.6	489
102	Commentary on â€~lbuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants' and â€~lbuprofen for the treatment of patent ductus arteriosus in preterm and/or low birth weight infants'. Evidence-Based Child Health: A Cochrane Review Journal, 2006, 1, 850-853.	2.0	0
103	Sildenafil Improves Alveolar Growth and Pulmonary Hypertension in Hyperoxia-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 750-756.	5.6	165
104	Vascular Endothelial Growth Factor Gene Therapy Increases Survival, Promotes Lung Angiogenesis, and Prevents Alveolar Damage in Hyperoxia-Induced Lung Injury. Circulation, 2005, 112, 2477-2486.	1.6	470
105	Oxygen-Sensitive Kv Channel Gene Transfer Confers Oxygen Responsiveness to Preterm Rabbit and Remodeled Human Ductus Arteriosus. Circulation, 2004, 110, 1372-1379.	1.6	101
106	Sildenafil Reverses O2 Constriction of the Rabbit Ductus Arteriosus by Inhibiting Type 5 Phosphodiesterase and Activating BKCa Channels. Pediatric Research, 2002, 52, 19-24.	2.3	39
107	Pulmonary Endothelial Progenitor Cells. , 0, , 203-216.		1