Igor Sazonov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/806434/publications.pdf Version: 2024-02-01

ICOP SAZONOV

#	Article	IF	CITATIONS
1	Estimating the accuracy of a reducedâ€order model for the calculation of fractional flow reserve (FFR). International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2908.	2.1	54
2	Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis. Biomechanics and Modeling in Mechanobiology, 2021, 20, 449-465.	2.8	51
3	A semiâ€active human digital twin model for detecting severity of carotid stenoses from head vibration—A coupled computational mechanics and computer vision method. International Journal for Numerical Methods in Biomedical Engineering, 2019, 35, e3180.	2.1	48
4	A stitching method for the generation of unstructured meshes for use with co-volume solution techniques. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 1826-1845.	6.6	40
5	Modelling pipeline for subjectâ€specific arterial blood flow—A review. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 1868-1910.	2.1	34
6	A novel method for non-invasively detecting the severity and location of aortic aneurysms. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1225-1242.	2.8	28
7	Geometrically Induced Force Interaction for Three-Dimensional Deformable Models. IEEE Transactions on Image Processing, 2011, 20, 1373-1387.	9.8	27
8	The Speed of Epidemic Waves in a One-Dimensional Lattice of SIR Models. Mathematical Modelling of Natural Phenomena, 2008, 3, 28-47.	2.4	24
9	Segmentation of biomedical images using active contour model with robust image feature and shape prior. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 232-248.	2.1	23
10	Semiâ€automatic surface and volume mesh generation for subjectâ€specific biomedical geometries. International Journal for Numerical Methods in Biomedical Engineering, 2012, 28, 133-157.	2.1	21
11	Modeling of the HIV-1 Life Cycle in Productively Infected Cells to Predict Novel Therapeutic Targets. Pathogens, 2020, 9, 255.	2.8	18
12	A two-stage model for the SIR outbreak: Accounting for the discrete and stochastic nature of the epidemic at the initial contamination stage. Mathematical Biosciences, 2011, 234, 108-117.	1.9	16
13	Intracellular Life Cycle Kinetics of SARS-CoV-2 Predicted Using Mathematical Modelling. Viruses, 2021, 13, 1735.	3.3	15
14	Patient-specific blood flow simulation through an aneurysmal thoracic aorta with a folded proximal neck. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 1167-1184.	2.1	14
15	Flowâ€induced ATP release in patientâ€specific arterial geometries – a comparative study of computational models. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 1038-1056.	2.1	13
16	Graph Theory for Modeling and Analysis of the Human Lymphatic System. Mathematics, 2020, 8, 2236.	2.2	11
17	Markov Chain-Based Stochastic Modelling of HIV-1 Life Cycle in a CD4 T Cell. Mathematics, 2021, 9, 2025.	2.2	11
18	Critical Issues in Modelling Lymph Node Physiology. Computation, 2017, 5, 3.	2.0	10

#	Article	IF	CITATIONS
19	Artificial intelligence approaches to predict coronary stenosis severity using non-invasive fractional flow reserve. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 1337-1350.	1.8	9
20	Geometric Potential Force for the Deformable Model. , 2009, , .		9
21	Generating the Voronoi-Delaunay Dual Diagram for Co-Volume Integration Schemes. , 2007, , .		8
22	Travelling waves in a network of SIR epidemic nodes with an approximation of weak coupling. Mathematical Medicine and Biology, 2011, 28, 165-183.	1.2	8
23	Numerical Prediction of Heat Transfer Patterns in a Subject-Specific Human Upper Airway. Journal of Heat Transfer, 2012, 134, .	2.1	8
24	A novel, FFT-based one-dimensional blood flow solution method for arterial network. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1311-1334.	2.8	8
25	Influences of domain extensions to a moderately stenosed patientâ€specific carotid bifurcation. International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21, 952-979.	2.8	7
26	Viral Infection Dynamics Model Based on a Markov Process with Time Delay between Cell Infection and Progeny Production. Mathematics, 2020, 8, 1207.	2.2	7
27	Smooth Delaunay-Vorono $ ilde{A}^{-}$ Dual Meshes for Co-Volume Integration Schemes. , 2006, , 529-541.		7
28	Integrated geometric and mechanical analysis of an image-based lymphatic valve. Journal of Biomechanics, 2017, 64, 172-179.	2.1	6
29	Quasi-modes in boundary-layer-type flows. Part 2. Large-time asymptotics of broadband inviscid small-amplitude two-dimensional perturbations. Journal of Fluid Mechanics, 2003, 488, 245-282.	3.4	3
30	Random migration processes between two stochastic epidemic centers. Mathematical Biosciences, 2016, 274, 45-57.	1.9	3
31	A novel modelling approach to energy transport in a respiratory system. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2854.	2.1	3
32	Sensitivity of SARS-CoV-2 Life Cycle to IFN Effects and ACE2 Binding Unveiled with a Stochastic Model. Viruses, 2022, 14, 403.	3.3	3
33	Automating fractional flow reserve (FFR) calculation from CT scans: A rapid workflow using unsupervised learning and computational fluid dynamics. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38, e3559.	2.1	3
34	Critical reaction time during a disease outbreak. Ecological Complexity, 2011, 8, 326-335.	2.9	2
35	Comparison of Two Explicit Time Domain Unstructured Mesh Algorithms for Computational Electromagnetics. Computational Methods in Applied Sciences (Springer), 2008, , 95-112.	0.3	2
36	Image Gradient Based Level Set Methods in 2D and 3D. Lecture Notes in Computational Vision and Biomechanics, 2013, , 101-120.	0.5	1

#	Article	IF	CITATIONS
37	An improved method of computing geometrical potential force (GPF) employed in the segmentation of 3D and 4D medical images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2017, 5, 287-296.	1.9	1
38	Scan-Based Flow Modelling in Human Upper Airways. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 241-280.	1.0	0
39	Extracting 3D Structures from Biomedical Data. , 2011, , .		0
40	Segmenting Carotid in CT Using Geometric Potential Field Deformable Model. Springer Proceedings in Mathematics and Statistics, 2013, , 149-162.	0.2	0
41	Efficient Geometrical Potential Force Computation for Deformable Model Segmentation. Lecture Notes in Computer Science, 2013, , 104-113.	1.3	0