Michel Houssa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8064200/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Buckled two-dimensional Xene sheets. Nature Materials, 2017, 16, 163-169.	27.5	641
2	Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Research, 2012, 5, 43-48.	10.4	620
3	Electronic properties of hydrogenated silicene and germanene. Applied Physics Letters, 2011, 98, .	3.3	399
4	Trap-assisted tunneling in high permittivity gate dielectric stacks. Journal of Applied Physics, 2000, 87, 8615-8620.	2.5	320
5	Twoâ€Dimensional Si Nanosheets with Local Hexagonal Structure on a MoS ₂ Surface. Advanced Materials, 2014, 26, 2096-2101.	21.0	311
6	Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide. Applied Physics Letters, 2007, 91, .	3.3	254
7	Electrical properties of high-κ gate dielectrics: Challenges, current issues, and possible solutions. Materials Science and Engineering Reports, 2006, 51, 37-85.	31.8	241
8	Germanium MOSFET Devices: Advances in Materials Understanding, Process Development, and Electrical Performance. Journal of the Electrochemical Society, 2008, 155, H552.	2.9	230
9	Can silicon behave like graphene? A first-principles study. Applied Physics Letters, 2010, 97, .	3.3	208
10	Band alignments in metal–oxide–silicon structures with atomic-layer deposited Al2O3 and ZrO2. Journal of Applied Physics, 2002, 91, 3079-3084.	2.5	190
11	Variation in the fixed charge density of SiO[sub x]/ZrO[sub 2] gate dielectric stacks during postdeposition oxidation. Applied Physics Letters, 2000, 77, 1885.	3.3	182
12	Silicene: a review of recent experimental and theoretical investigations. Journal of Physics Condensed Matter, 2015, 27, 253002.	1.8	180
13	Getting through the Nature of Silicene: An sp ² –sp ³ Two-Dimensional Silicon Nanosheet. Journal of Physical Chemistry C, 2013, 117, 16719-16724.	3.1	163
14	Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks. Applied Physics Letters, 2002, 80, 1975-1977.	3.3	157
15	HfO2 high-κ gate dielectrics on Ge (100) by atomic oxygen beam deposition. Applied Physics Letters, 2005, 86, 032908.	3.3	144
16	Vibrational properties of silicene and germanene. Nano Research, 2013, 6, 19-28.	10.4	144
17	Electron energy barriers between (100)Si and ultrathin stacks of SiO2, Al2O3, and ZrO2 insulators. Applied Physics Letters, 2001, 78, 3073-3075.	3.3	127
18	First-principles study of strained 2D MoS2. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 416-421.	2.7	119

#	Article	IF	CITATIONS
19	Electronic properties of two-dimensional hexagonal germanium. Applied Physics Letters, 2010, 96, .	3.3	114
20	Passivation of Ge(100)â^•GeO[sub 2]â^•high-κ Gate Stacks Using Thermal Oxide Treatments. Journal of the Electrochemical Society, 2008, 155, G33.	2.9	112
21	Model for the current–voltage characteristics of ultrathin gate oxides after soft breakdown. Journal of Applied Physics, 1998, 84, 4351-4355.	2.5	110
22	Molecular Dynamics Study of the Structure and Thermophysical Properties of Model sI Clathrate Hydrates. Journal of Physical Chemistry B, 2002, 106, 442-451.	2.6	109
23	Two-dimensional hexagonal tin: <i>ab initio</i> geometry, stability, electronic structure and functionalization. 2D Materials, 2014, 1, 021004.	4.4	107
24	Ge dangling bonds at the (100)Ge/GeO2 interface and the viscoelastic properties of GeO2. Applied Physics Letters, 2008, 93, .	3.3	103
25	Interface control of high-k gate dielectrics on Ge. Applied Surface Science, 2008, 254, 6094-6099.	6.1	95
26	Soft breakdown in ultrathin gate oxides: Correlation with the percolation theory of nonlinear conductors. Applied Physics Letters, 1998, 73, 514-516.	3.3	92
27	Interface engineering for Ge metal-oxide–semiconductor devices. Thin Solid Films, 2007, 515, 6337-6343.	1.8	87
28	An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Physical Chemistry Chemical Physics, 2013, 15, 3702.	2.8	86
29	Surface Defects and Passivation of Ge and Ill–V Interfaces. MRS Bulletin, 2009, 34, 504-513.	3.5	82
30	A Thermally Stable and High-Performance 90-nm \${m Al}_{2}{m O}_{3}ackslash{m Cu}\$-Based 1T1R CBRAM Cell. IEEE Transactions on Electron Devices, 2013, 60, 3690-3695.	3.0	80
31	Charge trapping in very thin high-permittivity gate dielectric layers. Applied Physics Letters, 2000, 77, 1381-1383.	3.3	74
32	Non-Gaussian behavior and anticorrelations in ultrathin gate oxides after soft breakdown. Applied Physics Letters, 1999, 74, 1579-1581.	3.3	72
33	Effect of O2post-deposition anneals on the properties of ultra-thin SiOx/ZrO2gate dielectric stacks. Semiconductor Science and Technology, 2001, 16, 31-38.	2.0	72
34	First-principles electronic functionalization of silicene and germanene by adatom chemisorption. Applied Surface Science, 2014, 291, 104-108.	6.1	69
35	HfO2 as gate dielectric on Ge: Interfaces and deposition techniques. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 256-260.	3.5	68
36	First-principles study of the structural and electronic properties of (100)Geâ^•Ge(M)O2 interfaces (M=Al,) Tj ETG	2q0,0,0 rg	BT /Overlock 1

#	Article	IF	CITATIONS
37	Effect of hafnium germanate formation on the interface of HfO2/germanium metal oxide semiconductor devices. Applied Physics Letters, 2006, 88, 141904.	3.3	67
38	Constant voltage stress induced degradation in HfO2/SiO2 gate dielectric stacks. Journal of Applied Physics, 2002, 91, 10127-10129.	2.5	63
39	Frequency characterization and modeling of interface traps in HfSixOy/HfO2 gate dielectric stack from a capacitance point-of-view. Applied Physics Letters, 2002, 81, 3392-3394.	3.3	62
40	Electronic structure of GeO2-passivated interfaces of (100)Ge with Al2O3 and HfO2. Applied Physics Letters, 2008, 92, 022109.	3.3	62
41	Model for interface defect and positive charge generation in ultrathin SiO2/ZrO2 gate dielectric stacks. Applied Physics Letters, 2002, 81, 709-711.	3.3	57
42	Engineering the electronic properties of silicene by tuning the composition of MoX ₂ and GaX (X = S,Se,Te) chalchogenide templates. 2D Materials, 2014, 1, 011010.	4.4	53
43	Thin epitaxial Si films as a passivation method for Ge(100): Influence of deposition temperature on Ge surface segregation and the high-k/Ge interface quality. Materials Science in Semiconductor Processing, 2006, 9, 679-684.	4.0	52
44	Electron energy band alignment at interfaces of (100)Ge with rare-earth oxide insulators. Applied Physics Letters, 2006, 88, 132111.	3.3	52
45	Reaction-dispersive proton transport model for negative bias temperature instabilities. Applied Physics Letters, 2005, 86, 093506.	3.3	51
46	High FET Performance for a Future CMOS \$hbox{GeO}_{2}\$ -Based Technology. IEEE Electron Device Letters, 2010, 31, 402-404.	3.9	50
47	Influence of Al ₂ O ₃ crystallization on band offsets at interfaces with Si and TiN _x . Applied Physics Letters, 2011, 99, 072103.	3.3	50
48	High-temperature series expansion of the spin correlation functions in B-spinel lattice. Journal of Physics Condensed Matter, 1998, 10, 3611-3623.	1.8	49
49	Vibrational properties of epitaxial silicene layers on (111) Ag. Applied Surface Science, 2014, 291, 113-117.	6.1	49
50	Electrical properties of thin SiON/Ta2O5 gate dielectric stacks. Journal of Applied Physics, 1999, 86, 6462-6467.	2.5	48
51	Materials and electrical characterization of molecular beam deposited CeO2 and CeO2/HfO2 bilayers on germanium. Journal of Applied Physics, 2007, 102, .	2.5	48
52	Effect of dipolar interactions on the phase behavior of the Gay–Berne liquid crystal model. Journal of Chemical Physics, 1998, 109, 9529-9542.	3.0	46
53	Intrinsic electron traps in atomic-layer deposited HfO2 insulators. Applied Physics Letters, 2016, 108, .	3.3	44
54	In-plane electronic thermal conductivity of layered d-wave high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1996, 257, 321-331.	1.2	43

#	Article	IF	CITATIONS
55	Advancing CMOS beyond the Si roadmap with Ge and III/V devices. , 2011, , .		43
56	Semiconducting-like filament formation in TiN/HfO2/TiN resistive switching random access memories. Applied Physics Letters, 2012, 100, .	3.3	43
57	Electronic Properties of Silicene: Insights from First-Principles Modeling. Journal of the Electrochemical Society, 2011, 158, H107.	2.9	42
58	Hole-Doped 2D InSe for Spintronic Applications. ACS Applied Nano Materials, 2018, 1, 6656-6665.	5.0	41
59	Electronic properties of (100)Ge/Ge(Hf)O2 interfaces: A first-principles study. Surface Science, 2008, 602, L25-L28.	1.9	38
60	Intrinsic point defects in buckled and puckered arsenene: a first-principles study. Physical Chemistry Chemical Physics, 2017, 19, 9862-9871.	2.8	38
61	Germanium MOSFETs With \$hbox{CeO}_{2}/hbox{HfO}_{2}/ hbox{TiN}\$ Gate Stacks. IEEE Transactions on Electron Devices, 2007, 54, 1425-1430.	3.0	37
62	Ge 3d core-level shifts at (100)Geâ^•Ge(Hf)O2 interfaces: A first-principles investigation. Applied Physics Letters, 2008, 92, .	3.3	37
63	Reaction field and Ewald summation study of mesophase formation in dipolar Gay-Berne model. Molecular Physics, 1998, 94, 439-446.	1.7	37
64	Stress-induced leakage current in ultrathin SiO2 layers and the hydrogen dispersive transport model. Applied Physics Letters, 2001, 78, 3289-3291.	3.3	36
65	Positive Bias Temperature Instability in nMOSFETs with ultra-thin Hf-silicate gate dielectrics. Microelectronic Engineering, 2005, 80, 130-133.	2.4	36
66	Thermal conductivity of superconductingBi2Sr2CaCu2O8andYBa2Cu3O7â^'y. Physical Review B, 1995, 51, 9372-9374.	3.2	35
67	Thermostability of amorphous zirconium aluminate high-k layers. Journal of Non-Crystalline Solids, 2002, 303, 144-149.	3.1	35
68	Electrical and reliability characterization of metal-gate/HfO2/Ge FET's with Si passivation. Microelectronic Engineering, 2007, 84, 2067-2070.	2.4	35
69	Role of hydrogen on negative bias temperature instability in HfO2-based hole channel field-effect transistors. Applied Physics Letters, 2004, 85, 2101-2103.	3.3	34
70	Effect of extreme surface roughness on the electrical characteristics of ultra-thin gate oxides. Solid-State Electronics, 1999, 43, 159-167.	1.4	33
71	Polarity dependence of defect generation in ultrathin SiO2/ZrO2 gate dielectric stacks. Applied Physics Letters, 2001, 79, 3134-3136.	3.3	33
72	Defect generation in high \hat{l}^{2} gate dielectric stacks under electrical stress: the impact of hydrogen. Journal of Physics Condensed Matter, 2005, 17, S2075-S2088.	1.8	33

#	Article	IF	CITATIONS
73	Germanium: The Past and Possibly a Future Material for Microelectronics. ECS Transactions, 2007, 11, 479-493.	0.5	33
74	Adsorption of molecular oxygen on the reconstructed β2(2×4)-GaAs(001) surface: A first-principles study. Surface Science, 2009, 603, 203-208.	1.9	33
75	Origin of the current discretization in deep reset states of an Al2O3/Cu-based conductive-bridging memory, and impact on state level and variability. Applied Physics Letters, 2014, 104, .	3.3	33
76	Model for the charge trapping in high permittivity gate dielectric stacks. Journal of Applied Physics, 2001, 89, 792-794.	2.5	32
77	Electrical characteristics of 8-/spl Aring/ EOT HfO/sub 2//TaN low thermal-budget n-channel FETs with solid-phase epitaxially regrown junctions. IEEE Transactions on Electron Devices, 2006, 53, 1657-1668.	3.0	32
78	H2S exposure of a (100)Ge surface: Evidences for a (2×1) electrically passivated surface. Applied Physics Letters, 2007, 90, 222105.	3.3	32
79	Topological to trivial insulating phase transition in stanene. Nano Research, 2016, 9, 774-778.	10.4	32
80	Relation between stress-induced leakage current and time-dependent dielectric breakdown in ultra-thin gate oxides. Semiconductor Science and Technology, 1999, 14, 892-896.	2.0	31
81	A theoretical study of the initial oxidation of the GaAs(001)-β2(2×4) surface. Applied Physics Letters, 2009, 95, .	3.3	31
82	Band alignment at interfaces of few-monolayer MoS2 with SiO2 and HfO2. Microelectronic Engineering, 2015, 147, 294-297.	2.4	31
83	Silicene on non-metallic substrates: Recent theoretical and experimental advances. Nano Research, 2018, 11, 1169-1182.	10.4	31
84	In situ crystallisation in ZrO2 thin films during high temperature X-ray diffraction. Microelectronics Reliability, 2001, 41, 995-998.	1.7	30
85	Operating-Current Dependence of the Cu-Mobility Requirements in Oxide-Based Conductive-Bridge RAM. IEEE Electron Device Letters, 2015, 36, 775-777.	3.9	30
86	Thermal conductivity of unconventional superconductors: a probe of the order parameter symmetry. Superconductor Science and Technology, 1999, 12, R103-R114.	3.5	29
87	Band alignment at the interfaces of Al2O3 and ZrO2-based insulators with metals and Si. Journal of Non-Crystalline Solids, 2002, 303, 69-77.	3.1	28
88	Nature of the filament formed in HfO2-based resistive random access memory. Thin Solid Films, 2013, 533, 15-18.	1.8	28
89	Influence of Van Hove singularities on the thermal conductivity of high-Tcsuperconductors. Physical Review B, 1996, 54, 6126-6128.	3.2	26
90	Analysis of the Excellent Memory Disturb Characteristics of a Hourglass-Shaped Filament in Al ₂ 0 ₃ /Cu-Based CBRAM Devices. IEEE Transactions on Electron Devices, 2015, 62, 2007-2013.	3.0	26

#	Article	IF	CITATIONS
91	Thermal conductivity of an untwinned YBa2Cu3O7â~δ single crystal. Physica C: Superconductivity and Its Applications, 1993, 218, 15-18.	1.2	25
92	Impact of point defects on the electronic and transport properties of silicene nanoribbons. Journal of Physics Condensed Matter, 2016, 28, 035302.	1.8	25
93	Bi-based 2223 superconducting polycrystalline materials prepared by either a solid state route or a glassy †matrix' precursor method: Chemical analysis as well as electrical and thermal transport properties. Physica C: Superconductivity and Its Applications, 1994, 231, 259-270.	1.2	24
94	Electrical characteristics of Ge/GeOx(N)/HfO2 gate stacks. Journal of Non-Crystalline Solids, 2005, 351, 1902-1905.	3.1	24
95	Advanced DFT–NEGF Transport Techniques for Novel 2-D Material and Device Exploration Including HfS ₂ /WSe ₂ van der Waals Heterojunction TFET and WTe ₂ /WS ₂ Metal/Semiconductor Contact. IEEE Transactions on Electron Devices. 2021. 68. 5372-5379.	3.0	24
96	Thermal conductivity of high-Tc superconductors: effect of Van Hove singularities. Physica C: Superconductivity and Its Applications, 1996, 265, 258-266.	1.2	23
97	Model for the trap-assisted tunnelling current through very thin SiO2/ZrO2gate dielectric stacks. Semiconductor Science and Technology, 2001, 16, 427-432.	2.0	23
98	Threshold voltage shifts in Si passivated (100)Ge p-channel field effect transistors: Insights from first-principles modeling. Applied Physics Letters, 2007, 91, 023506.	3.3	23
99	Theoretical aspects of graphene-like group IV semiconductors. Applied Surface Science, 2014, 291, 98-103.	6.1	23
100	Magneto-thermal conductivity of high-Tcsuperconductors: electron-vortex scattering contribution. Journal of Physics Condensed Matter, 1995, 7, L193-L199.	1.8	22
101	Magnetic Properties and Critical Behaviour of the B-Spinel CdCr2xIn2?2xS4 (0.9 ? x ? 1). Physica Status Solidi (B): Basic Research, 1999, 214, 403-409.	1.5	22
102	Energy barriers between (100)Si and Al2O3 and ZrO2-based dielectric stacks: internal electron photoemission measurements. Microelectronic Engineering, 2001, 59, 335-339.	2.4	22
103	Insights on the physical mechanism behind negative bias temperature instabilities. Applied Physics Letters, 2007, 90, 043505.	3.3	22
104	Ferromagnetism in two-dimensional hole-doped SnO. AIP Advances, 2018, 8, .	1.3	22
105	On the van der Waals Epitaxy of Homo-/Heterostructures of Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2020, 12, 27508-27517.	8.0	22
106	Germanium FETs and capacitors with rare earth CeO2/HfO2 gates. Solid-State Electronics, 2007, 51, 1508-1514.	1.4	21
107	The electronic contribution to the thermal conductivity of layered high- materials. Journal of Physics Condensed Matter, 1996, 8, 2043-2052	1.8	20
108	Transitivity of band offsets between semiconductor heterojunctions and oxide insulators. Applied Physics Letters, 2011, 99, .	3.3	20

#	Article	IF	CITATIONS
109	Toward an Understanding of the Electric Field-Induced Electrostatic Doping in van der Waals Heterostructures: A First-Principles Study. ACS Applied Materials & Interfaces, 2017, 9, 7725-7734.	8.0	20
110	Magnetic properties and percolation threshold in diluted B-spinel ZnCr2xAl2â^'2xS4: a study through high-temperature expansions. Physica B: Condensed Matter, 1999, 270, 384-390.	2.7	19
111	Experimental and theoretical study of Ge surface passivation. Microelectronic Engineering, 2007, 84, 2267-2273.	2.4	19
112	Contact Resistance at MoS ₂ -Based 2D Metal/Semiconductor Lateral Heterojunctions. ACS Applied Nano Materials, 2019, 2, 760-766.	5.0	19
113	Superconductivity fluctuation effects on the thermal conductivity ofBi2Sr2CaCu2O8. Physical Review B, 1996, 54, R6885-R6888.	3.2	18
114	Superconducting fluctuations in the thermal conductivity ofBi2Sr2CaCu2O8andDyBa2Cu3O7â^'xmaterials. Physical Review B, 1997, 56, 802-808.	3.2	18
115	The future of high-K on pure germanium and its importance for Ge CMOS. Materials Science in Semiconductor Processing, 2005, 8, 203-207.	4.0	18
116	Impact of germanium surface passivation on the leakage current of shallow planar p–n junctions. Materials Science in Semiconductor Processing, 2006, 9, 716-720.	4.0	18
117	Study of CVD high-k gate oxides on high-mobility Ge and Ge/Si substrates. Thin Solid Films, 2006, 508, 1-5.	1.8	18
118	Extrinsic interface formation of HfO2 and Al2O3â^•GeOx gate stacks on Ge (100) substrates. Journal of Applied Physics, 2009, 106, .	2.5	18
119	A first-principles study of the structural and electronic properties of Ill–V/thermal oxide interfaces. Microelectronic Engineering, 2009, 86, 1747-1750.	2.4	18
120	Oxidation of the GaAs(001) surface: Insights from first-principles calculations. Physical Review B, 2012, 85, .	3.2	18
121	90nm WAl <inf>2</inf> 0 <inf>3</inf> TiWCu 1T1R CBRAM cell showing low-power, fast and disturb-free operation. , 2013, , .		18
122	Functional silicene and stanene nanoribbons compared to graphene: electronic structure and transport. 2D Materials, 2016, 3, 015001.	4.4	18
123	On the electrostatic control achieved in transistors based on multilayered MoS2: A first-principles study. Journal of Applied Physics, 2017, 121, .	2.5	18
124	Signature of thed-wave gap parameter in the field dependence of the electrothermal conductivity of high-Tcsuperconductors up toTc. Physical Review B, 1996, 54, R12713-R12716.	3.2	17
125	Low-temperature behaviour of the thermal conductivity of high- T c superconductors: likeliness of wave pairing. Europhysics Letters, 1996, 33, 695-700.	2.0	17
126	Influence of a magnetic field on the thermal conductivity of d-wave high- superconductors. Journal of Physics Condensed Matter, 1997, 9, 201-210.	1.8	17

#	Article	IF	CITATIONS
127	Defect generation in Si/SiO2/ZrO2/TiN structures: the possible role of hydrogen. Semiconductor Science and Technology, 2001, 16, L93-L96.	2.0	17
128	A simulation analysis of FIBL in decananometer Double-Gate MOSFETs with high-κ gate dielectrics. Journal of Non-Crystalline Solids, 2005, 351, 1897-1901.	3.1	17
129	Molecular beam epitaxy passivation studies of Ge and Ill–V semiconductors for advanced CMOS. Microelectronic Engineering, 2009, 86, 1592-1595.	2.4	17
130	Electronic properties of Ge dangling bond centers at Si1â^'xGex/SiO2 interfaces. Applied Physics Letters, 2009, 95, 222106.	3.3	17
131	Band alignment at interfaces of synthetic few-monolayer MoS2 with SiO2 from internal photoemission. APL Materials, 2018, 6, .	5.1	17
132	A systematic study of various 2D materials in the light of defect formation and oxidation. Physical Chemistry Chemical Physics, 2019, 21, 1089-1099.	2.8	17
133	(Invited) Spectroscopy of Deep Gap States in High-k Insulators. ECS Transactions, 2014, 64, 17-22.	0.5	16
134	Impact of Layer Alignment on the Behavior of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><m Tunnel Field-Effect Transistors: An <i>AbÂlnitio</i> Study. Physical Review Applied, 2017, 8, .</m </mml:mrow></mml:msub></mml:mrow></mml:math 	iml:mn>2-	
135	Magneto-transport study of a Bi2223 superconductor produced by a high-pressure method. Superconductor Science and Technology, 1996, 9, 644-652.	3.5	15
136	Comment on "Electronic thermal conductivity and the Wiedemann-Franz law for unconventional superconductors― Physical Review B, 1997, 56, 953-954.	3.2	15
137	Characterization of silicon oxynitride films by grazing-emission X-ray fluorescence spectrometry. Thin Solid Films, 2000, 359, 197-202.	1.8	15
138	Impact of Nitrogen Incorporation in SiOx/HfSiO Gate Stacks on Negative Bias Temperature Instabilities. , 2006, , .		15
139	Electrical Properties of Atomic-Beam Deposited GeO[sub 1â^'x]N[sub x]â^•HfO[sub 2] Gate Stacks on Ge. Journal of the Electrochemical Society, 2006, 153, G1112.	2.9	15
140	Investigation of capacitance–voltage characteristics in Ge /high-l̂º MOS devices. Journal of Non-Crystalline Solids, 2009, 355, 1171-1175.	3.1	15
141	Control of metal/oxide electron barriers in CBRAM cells by low work-function liners. Microelectronic Engineering, 2013, 109, 156-159.	2.4	15
142	High-resolution electron spin resonance analysis of ion bombardment induced defects in advanced low-κ insulators (κ = 2.0-2.5). Applied Physics Letters, 2013, 102, .	3.3	15
143	Point defects in MoS 2 : Comparison between first-principles simulations and electron spin resonance experiments. Applied Surface Science, 2017, 416, 853-857.	6.1	15
144	Graphene based Van der Waals contacts on MoS ₂ field effect transistors. 2D Materials, 2021, 8, 015003.	4.4	15

#	Article	IF	CITATIONS
145	Ferromagnetism and half-metallicity in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>M</mml:mi><mml:mi mathvariant="normal">O<mml:mo>Â</mml:mo><mml:mo>(</mml:mo><mml:mi>M</mml:mi><mml:mi monolayers induced by hole doping. Physical Review Materials, 2020, 4, .</mml:mi </mml:mi </mml:mrow></mml:math 	າວ>= <td>nl:mo><mm< td=""></mm<></td>	nl:mo> <mm< td=""></mm<>
146	Thermal conductivity of pure or iron-doped YBa2Cu3O7- deltawith or without an excess of CuO. Journal of Physics Condensed Matter, 1994, 6, 6305-6316.	1.8	14
147	Thermal conductivity ofYBa2(Cu1â^'xZnx)3O7â^'δ:Relation betweenxand δ. Physical Review B, 1997, 56, 6226-6230.	3.2	14
148	Model for defect generation at the (1 0 0)Si/SiO2 interface during electron injection in MOS structures. Applied Surface Science, 2003, 212-213, 749-752.	6.1	14
149	Electrical Characterization of Capacitors with AVD-Deposited Hafnium Silicates as High-k Gate Dielectric. Journal of the Electrochemical Society, 2005, 152, F185.	2.9	14
150	Collapse of the low temperature insulating state in Cr-doped V2O3 thin films. Applied Physics Letters, 2015, 107, .	3.3	14
151	Internal Photoemission Metrology of Inhomogeneous Interface Barriers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700865.	1.8	14
152	Contact resistance at graphene/MoS2 lateral heterostructures. Applied Physics Letters, 2019, 114, .	3.3	14
153	Efficient Direct Band-Gap Transition in Germanium by Three-Dimensional Strain. ACS Applied Materials & Interfaces, 2021, 13, 30941-30949.	8.0	14
154	Influence of a Van Hove singularity on the electronic specific heat of high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1996, 267, 24-30.	1.2	13
155	Modeling negative bias temperature instabilities in hole channel metal–oxide–semiconductor field effect transistors with ultrathin gate oxide layers. Journal of Applied Physics, 2004, 95, 2786-2791.	2.5	13
156	Contribution of fast and slow states to Negative Bias Temperature Instabilities in HfxSi(1-x)ON/TaN based pMOSFETs. Microelectronic Engineering, 2005, 80, 134-137.	2.4	13
157	Noninvasive embedding of single Co atoms in Ge(111)2 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mo>× </mml:mo>  1 surfaces. Physical Review B, 2012, 85, .</mml:math 	3.2	13
158	Excellent <i>R</i> _{off} / <i>R</i> _{on} ratio and short programming time in Cu/Al ₂ O ₃ â€based conductiveâ€bridging RAM under lowâ€current (10 μA) operat Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 302-305.	tion8	13
159	Evidence of d-wave pairing in the thermal conductivity of YBa2Cu3O7â^'d and Bi2Sr2CaCu2O8 single crystals. Zeitschrift FÃ1⁄4r Physik B-Condensed Matter, 1997, 101, 353-357.	1.1	12
160	Negative bias temperature instabilities in HfSiON/TaN-based pMOSFETs. , 0, , .		12
161	Interface Properties Improvement of Ge/Al2O3 and Ge/GeO2/Al2O3 Gate Stacks using Molecular Beam Deposition. ECS Transactions, 2008, 16, 411-422.	0.5	12
162	Current-voltage characteristics of armchair Sn nanoribbons. Physica Status Solidi - Rapid Research Letters, 2014, 8, 931-934.	2.4	12

#	Article	IF	CITATIONS
163	(Invited) Internal Photoemission of Electrons from 2-Dimensional Semiconductors. ECS Transactions, 2017, 80, 191-201.	0.5	12
164	Structural characterization of SnS crystals formed by chemical vapour deposition. Journal of Microscopy, 2017, 268, 276-287.	1.8	12
165	Study of the Intrinsic Limitations of the Contact Resistance of Metal/Semiconductor Interfaces through Atomistic Simulations. ECS Journal of Solid State Science and Technology, 2018, 7, N73-N80.	1.8	12
166	Key material parameters driving CBRAM device performances. Faraday Discussions, 2019, 213, 67-85.	3.2	12
167	Two-dimensional gallium and indium oxides from global structure searching: Ferromagnetism and half metallicity via hole doping. Journal of Applied Physics, 2020, 128, 034304.	2.5	12
168	Defect Generation in Ultrathin SiON/ZrO[sub 2] Gate Dielectric Stacks. Journal of the Electrochemical Society, 2002, 149, F181.	2.9	11
169	Modelling negative bias temperature instabilities in advanced p-MOSFETs. Microelectronics Reliability, 2005, 45, 3-12.	1.7	11
170	Impact of Hf content on negative bias temperature instabilities in HfSiON-based gate stacks. Applied Physics Letters, 2005, 86, 173509.	3.3	11
171	Reliability study of La2O3 capped HfSiON high-permittivity n-type metal-oxide-semiconductor field-effect transistor devices with tantalum-rich electrodes. Journal of Applied Physics, 2008, 104, 044512.	2.5	11
172	First-principles study of Ge dangling bonds in GeO2 and correlation with electron spin resonance at Ge/GeO2 interfaces. Applied Physics Letters, 2011, 99, .	3.3	11
173	Electron band alignment at the interface of (100)InSb with atomic-layer deposited Al ₂ O ₃ . Applied Physics Letters, 2012, 101, 082114.	3.3	11
174	Energy Band Alignment of a Monolayer MoS 2 with SiO 2 and Al 2 O 3 Insulators from Internal Photoemission. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800616.	1.8	11
175	Impact of MoS ₂ layer transfer on electrostatics of MoS ₂ /SiO ₂ interface. Nanotechnology, 2019, 30, 055702.	2.6	11
176	Fundamental limitation of van der Waals homoepitaxy by stacking fault formation in WSe ₂ . 2D Materials, 2020, 7, 025027.	4.4	11
177	Strain and ferroelectricity in wurtzite ScxAl1â^'xN materials. Applied Physics Letters, 2021, 119, .	3.3	11
178	Electronic specific heat of superconductors with Van Hove singularities: Effects of a magnetic field and thermal fluctuations. Physical Review B, 1998, 57, 5401-5411.	3.2	10
179	Analysis of the gate voltage fluctuations in ultra-thin gate oxides after soft breakdown. , 0, , .		10
180	Postdeposition-Anneal Effect on Negative Bias Temperature Instability in HfSiON Gate Stacks. IEEE Transactions on Device and Materials Reliability, 2007, 7, 146-151.	2.0	10

#	Article	IF	CITATIONS
181	First-principles study of the electronic properties of Ge dangling bonds at (100)Si1â^'xGex/SiO2 interfaces. Applied Physics Letters, 2009, 95, .	3.3	10
182	Universal stress-defect correlation at (100)semiconductor/oxide interfaces. Applied Physics Letters, 2011, 98, 141901.	3.3	10
183	Impact of Point Defects and Oxidation on the Electronic Properties of HfS ₂ Monolayers. ECS Journal of Solid State Science and Technology, 2016, 5, Q3054-Q3059.	1.8	10
184	Predicting 2D silicon allotropes on SnS2. Nano Research, 2017, 10, 1697-1709.	10.4	10
185	The lead acceptor in p-type natural 2H-polytype MoS ₂ crystals evidenced by electron paramagnetic resonance. Journal of Physics Condensed Matter, 2017, 29, 08LT01.	1.8	10
186	Band alignment at interfaces of two-dimensional materials: internal photoemission analysis. Journal of Physics Condensed Matter, 2020, 32, 413002.	1.8	10
187	Electronic thermal conductivity of high critical temperature superconductors. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1483-1484.	1.2	9
188	Field dependence of the electrothermal conductivity of high-Tc superconductors. European Physical Journal D, 1996, 46, 1003-1004.	0.4	9
189	Transport properties of HgBaCaCuO(1223) polycrystalline superconductors. Superconductor Science and Technology, 1998, 11, 128-132.	3.5	9
190	Observation of critical gate oxide thickness for substrate-defect related oxide failure. Applied Physics Letters, 1999, 75, 1255-1257.	3.3	9
191	X-ray irradiation effect on the reliability of ultra-thin gate oxides and oxynitrides. Microelectronic Engineering, 1999, 48, 43-46.	2.4	9
192	Soft breakdown in very thin Ta2O5 gate dielectric layers. Solid-State Electronics, 2000, 44, 521-525.	1.4	9
193	Electron spin resonance analysis of interfacial Si dangling bond defects in stacks of ultrathin SiO2, Al2O3, and ZrO2 layers on (100)Si. Journal of Non-Crystalline Solids, 2002, 303, 162-166.	3.1	9
194	Aging process of electrical contacts in granular matter. Journal of Applied Physics, 2003, 94, 7835.	2.5	9
195	Current Challenges in Ge MOS Technology. ECS Transactions, 2006, 3, 371-384.	0.5	9
196	Electrical Performance of Ge Devices. , 2007, , 233-265.		9
197	Atomic Layer Deposition of High-k Dielectric Layers on Ge and III-V MOS Channels. ECS Transactions, 2008, 16, 671-685.	0.5	9
198	Interface barriers at the interfaces of polar GaAs(111) faces with Al2O3. Applied Physics Letters, 2012, 100, .	3.3	9

#	Article	IF	CITATIONS
199	(Invited) Theoretical Study of Silicene and Germanene. ECS Transactions, 2013, 53, 51-62.	0.5	9
200	Electron barrier height at CuxTe1â^'x/Al2O3 interfaces of conducting bridge memory stacks. Thin Solid Films, 2013, 533, 34-37.	1.8	9
201	Analysis of Transferred MoS ₂ Layers Grown by MOCVD: Evidence of Mo Vacancy Related Defect Formation. ECS Journal of Solid State Science and Technology, 2020, 9, 093001.	1.8	9
202	Advanced cleaning for the growth of ultrathin gate oxide. Microelectronic Engineering, 1999, 48, 199-206.	2.4	8
203	Stretch-out of high-permittivity MOS capacitance–voltage curves resulting from a lateral non-uniform oxide charge distribution. Journal of Non-Crystalline Solids, 2003, 322, 219-224.	3.1	8
204	Effect of the dielectric thickness and the metal deposition technique on the mobility for HfO2/TaN NMOS devices. Microelectronic Engineering, 2005, 80, 86-89.	2.4	8
205	H[sub 2]â^•D[sub 2] Isotopic Effect on Negative Bias Temperature Instabilities in SiO[sub x]â^•HfSiONâ^•TaN Gate Stacks. Electrochemical and Solid-State Letters, 2006, 9, G10.	2.2	8
206	Silicene nanoribbons on transition metal dichalcogenide substrates: Effects on electronic structure and ballistic transport. Nano Research, 2016, 9, 3394-3406.	10.4	8
207	Impact of temperature and programming method on the data retention of Cu/Al 2 O 3 -based conductive-bridge RAM operated at low-current (10 î¼A). Solid-State Electronics, 2016, 125, 189-197.	1.4	8
208	Doping-induced ferromagnetism in InSe and SnO monolayers. Journal of Computational Electronics, 2021, 20, 88-94.	2.5	8
209	What Does the Field Dependence of the Thermal Conductivity of the Heavy Fermion SuperconductorUPt3Tell Us about the Symmetry of the Order Parameter?. Physical Review Letters, 1997, 79, 2879-2882.	7.8	7
210	Impact of Nitrogen on Negative Bias Temperature Instability in p-Channel MOSFETs. Electrochemical and Solid-State Letters, 2003, 6, G146.	2.2	7
211	Short minority carrier response time in HfO2 /Ge metal-insulator-semiconductor capacitors. Microelectronic Engineering, 2005, 80, 34-37.	2.4	7
212	Performance Degradation Induced by Fringing Field-Induced Barrier Lowering and Parasitic Charge in Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistors with High-κ Dielectrics. Japanese Journal of Applied Physics, 2005, 44, 8362-8366.	1.5	7
213	Influence of passivating interlayer on Ge/HfO2 and Ge/Al2O3 interface band diagrams. Materials Science in Semiconductor Processing, 2008, 11, 230-235.	4.0	7
214	First-principles investigation of the electron spin resonance parameters of germanium interfacial dangling bond centers. Applied Physics Letters, 2009, 94, 184103.	3.3	7
215	Electron energy band alignment at the NiO/SiO2 interface. Applied Physics Letters, 2010, 96, .	3.3	7
216	Electronic Properties of Silicene: Insights from First-Principles Modelling. ECS Transactions, 2010, 33, 185-193.	0.5	7

#	Article	IF	CITATIONS
217	Auger electron spectroscopy study of semiconductor surfaces: Effect of cleaning in inert atmosphere. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 041227.	1.2	7
218	Oxygen and hydroxyl adsorption on MS ₂ (M = Mo, W, Hf) monolayers: a firstâ€principles molecular dynamics study. Physica Status Solidi - Rapid Research Letters, 2016, 10, 787-791.	2.4	7
219	Hole-Doping Induced Ferromagnetism in Monolayer SnO: A First-Principles Study. ECS Transactions, 2017, 80, 339-345.	0.5	7
220	Evaluation of the effective work-function of monolayer graphene on silicon dioxide by internal photoemission spectroscopy. Thin Solid Films, 2019, 674, 39-43.	1.8	7
221	Carrier-mediated ferromagnetism in two-dimensional PtS ₂ . RSC Advances, 2020, 10, 952-957.	3.6	7
222	First-Principles Study of the Contact Resistance at 2D Metal/2D Semiconductor Heterojunctions. Applied Sciences (Switzerland), 2020, 10, 2731.	2.5	7
223	Quarter-filled Kane-Mele Hubbard model: Dirac half metals. Physical Review B, 2021, 103, .	3.2	7
224	Two dimensional V2O3 and its experimental feasibility as robust room-temperature magnetic Chern insulator. Npj 2D Materials and Applications, 2021, 5, .	7.9	7
225	Effect of Zn doping and oxygen stoichiometry on the thermal conductivity of. Superconductor Science and Technology, 1998, 11, 44-48.	3.5	6
226	Charge Trapping in SiOx/ZrO2and SiOx/TiO2Gate Dielectric Stacks. Japanese Journal of Applied Physics, 2001, 40, 2804-2809.	1.5	6
227	Simulations of threshold voltage instabilities in HfySiOx and SiO2/HfySiOx-based field-effect transistors. Applied Physics Letters, 2003, 83, 5065-5067.	3.3	6
228	Electrical and physical characterization of remote plasma oxidized HfO/sub 2/ gate dielectrics. IEEE Transactions on Electron Devices, 2006, 53, 1153-1160.	3.0	6
229	Electrical Passivation of the (100)Ge Surface by Its Thermal Oxide. ECS Transactions, 2007, 11, 451-459.	0.5	6
230	Nitrogen Incorporation in HfSiO(N)/TaN Gate Stacks: Impact on Performances and NBTI. IEEE Electron Device Letters, 2007, 28, 613-615.	3.9	6
231	Energy band-alignment of a multimetal-layer gated metal-oxide-semiconductor structure. Applied Physics Letters, 2009, 95, .	3.3	6
232	Electron transport through high-κ dielectric barriers: A non-equilibrium Green's function (NEGF) study. Journal of Non-Crystalline Solids, 2009, 355, 1180-1184.	3.1	6
233	Structural and vibrational properties of amorphous GeO2 from first-principles. Applied Physics Letters, 2011, 98, .	3.3	6
234	Charge instability of atomic-layer deposited TaSiOxinsulators on Si, InP, and In0.53Ga0.47As. Applied Physics Letters, 2012, 100, 202104.	3.3	6

#	Article	IF	CITATIONS
235	Liquid-Phase Adsorption of Sulfur on Germanium: Reaction Mechanism and Atomic Geometry. Journal of Physical Chemistry C, 2013, 117, 7451-7458.	3.1	6
236	Origin of the deep reset and low variability of pulse-programmed WAl <inf>2</inf> 0 <inf>3</inf> TiWCu CBRAM device. , 2014, , .		6
237	Band Alignment at Interfaces of Oxide Insulators with Semiconductors. Integrated Ferroelectrics, 2011, 125, 53-60.	0.7	5
238	Self-Affine Surface Roughness of Chemically and Thermally Cleaned Ge(100) Surfaces. Journal of the Electrochemical Society, 2011, 158, H1090.	2.9	5
239	(Invited) Structural and Chemical Stabilization of the Epitaxial Silicene. ECS Transactions, 2013, 58, 217-227.	0.5	5
240	Interaction of silicene and germanene with non-metallic substrates. Journal of Physics: Conference Series, 2015, 574, 012015.	0.4	5
241	Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study. Applied Physics Letters, 2016, 108, .	3.3	5
242	Band offsets and trap-related electron transitions at interfaces of (100)InAs with atomic-layer deposited Al2O3. Journal of Applied Physics, 2016, 120, 235701.	2.5	5
243	Hydrogen induced dipole at the Pt/oxide interface in MOS devices. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 260-264.	1.8	5
244	Measurement of direct and indirect bandgaps in synthetic ultrathin MoS2 and WS2 films from photoconductivity spectra. Journal of Applied Physics, 2021, 129, .	2.5	5
245	Tuning the spintronic properties of graphene with atomically precise Au clusters. JPhys Materials, 2021, 4, 045005.	4.2	5
246	Contributions of critical and Gaussian fluctuations to the specific heat in and in under a magnetic field. Superconductor Science and Technology, 1998, 11, 76-81.	3.5	4
247	Comment on "Observation of vortex-lattice melting inYBa2Cu3O7â^îby Seebeck-effect measurements― Physical Review B, 1999, 59, 671-673.	3.2	4
248	Computer simulations of dipolar liquid crystal phases. Computer Physics Communications, 1999, 121-122, 259-261.	7.5	4
249	Negative Bias Temperature Instabilities in SiO[sub 2]/HfO[sub 2]-Based Hole Channel FETs. Journal of the Electrochemical Society, 2004, 151, F288.	2.9	4
250	Ge deep sub-micron pFETs with etched TaN metal gate on a high-k dielectric, fabricated in a 200mm silicon prototyping line. , 0, , .		4
251	First-Principles Investigation of (100)Ge/Ge(Hf)O2 Interfaces. ECS Transactions, 2007, 11, 471-478.	0.5	4
252	Negative bias temperature instabilities in HfSiO(N)-based MOSFETs: Electrical characterization and modeling. Microelectronics Reliability, 2007, 47, 880-889.	1.7	4

#	Article	IF	CITATIONS
253	Negative bias temperature instability on Si-passivated Ge-interface. , 2008, , .		4
254	Positive and negative bias temperature instability in La <inf>2</inf> O <inf>3</inf> and Al <inf>2</inf> O <inf>3</inf> capped high-k MOSFETs. , 2009, , .		4
255	Electronic structure of NiO layers grown on Al2O3 and SiO2 using metallo-organic chemical vapour deposition. Journal of Applied Physics, 2011, 110, .	2.5	4
256	Challenges for introducing Ge and III/V devices into CMOS technologies. , 2012, , .		4
257	Band alignment at interfaces of amorphous Al2O3 with Ge1â^'xSnx- and strained Ge-based channels. Applied Physics Letters, 2014, 104, 202107.	3.3	4
258	Modulation of electron barriers between Ti <scp>N</scp> _{<i>x</i>} and oxide insulators (<scp>S</scp> i <scp>O</scp> ₂ , Al ₂ <scp>O</scp> ₃) using Ti interlayer. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 382-388.	1.8	4
259	Optimization of the write algorithm at low-current (10μA) in Cu/Al <inf>2</inf> O <inf>3</inf> -based conductive-bridge RAM. , 2015, , .		4
260	Fast and Stable Sub-10uA Pulse Operation in W/SiO2/Ta/Cu 90nm 1T1R CBRAM Devices. , 2015, , .		4
261	Improving Post-Cycling Low Resistance State Retention in Resistive RAM With Combined Oxygen Vacancy and Copper Filament. IEEE Electron Device Letters, 2019, 40, 1072-1075.	3.9	4
262	Impacts of Ta Buffer Layer and Cu–Ge–Te Composition on the Reliability of GeSe-Based CBRAM. IEEE Transactions on Electron Devices, 2019, 66, 5133-5138.	3.0	4
263	Impact of La–OH bonds on the retention of Co/LaSiO CBRAM. Applied Physics Letters, 2020, 117, .	3.3	4
264	Energy Band Alignment of Few-Monolayer WS ₂ and WSe ₂ with SiO ₂ Using Internal Photoemission Spectroscopy. ECS Journal of Solid State Science and Technology, 2020, 9, 093009.	1.8	4
265	Origin of supertetragonality in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>BaTiO </mml:mi> <mml:mn> 3 Physical Review Materials, 2022, 6, .</mml:mn></mml:msub></mml:math 	:r 2 ,r 4 > <td>ml4msub></td>	ml4msub>
266	Thermoelectric power and thermal conductivity in YBa2(Cu1â^'xFex)3O7â^'δ with or without excess of copper oxide. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1465-1466.	1.2	3
267	DIPOLAR GAY–BERNE LIQUID CRYSTALS: A MONTE CARLO STUDY. International Journal of Modern Physics C, 1999, 10, 391-401.	1.7	3
268	Effect of x-ray irradiation on the electrical characteristics of ultra-thin gate oxides. Semiconductor Science and Technology, 1999, 14, 741-746.	2.0	3
269	Reply to the "Comment on â€~Thermal conductivity ofYBa2(Cu1â^'xZnx)3O7â^'Î :Relation betweenxand δ' Physical Review B, 1999, 59, 3914-3915.	ậ€• 3.2	3
270	Electrical and physical characterization of high-k dielectric layers. , 0, , .		3

270 Electrical and physical characterization of high-k dielectric layers. , 0, , .

#	Article	IF	CITATIONS
271	Polarity dependence of bias temperature instabilities in Hf/sub (x)Si/sub (1-x)ON/TaN gate stacks. , 0, , .		3
272	Reliability issues in advanced High k/metal gate stacks for 45 nm CMOS applications. , 2006, , .		3
273	Characterization of Atomic-Beam Deposited GeO1-xNx/HfO2 Stacks on Ge. ECS Transactions, 2006, 1, 9-16.	0.5	3
274	IMPACT OF HIGH-κ PROPERTIES ON MOSFET ELECTRICAL CHARACTERISTICS. , 2006, , 97-108.		3
275	Atomic Layer Deposition of Hafnium Based Gate Dielectric Layers for CMOS Applications. ECS Transactions, 2007, 11, 227-241.	0.5	3
276	Ge and III/V devices for advanced CMOS. , 2009, , .		3
277	Impact of nitridation on recoverable and permanent negative bias temperature instability degradation in high-k/metal-gate p-type metal oxide semiconductor field effect transistors. Journal of Vacuum Science & Technology B, 2009, 27, 463.	1.3	3
278	Experimental and theoretical investigation of defects at (100) Si1â^'xGex/oxide interfaces. Microelectronic Engineering, 2011, 88, 383-387.	2.4	3
279	Influence of metal electrode stoichiometry on the electron barrier height at CuxTe1â^'x/Al2O3 interfaces for CBRAM applications. Microelectronic Engineering, 2014, 120, 9-12.	2.4	3
280	Determination of energy thresholds of electron excitations at semiconductor/insulator interfaces using trap-related displacement currents. Microelectronic Engineering, 2019, 215, 110992.	2.4	3
281	Role of Stronger Interlayer van der Waals Coupling in Twinâ€Free Molecular Beam Epitaxy of 2D Chalcogenides. Advanced Materials Interfaces, 2021, 8, 2100438.	3.7	3
282	Electron-phonon scattering in cold-metal contacted two-dimensional semiconductor devices. , 2021, ,		3
283	Critical Exponents and Magnetic Short-Range Order in the System CdCr2xIn2-2xS4. Physica Status Solidi (B): Basic Research, 2000, 221, 729-736.	1.5	2
284	Model for negative bias temperature instability in p-MOSFETs with ultrathin oxynitride layers. Journal of Non-Crystalline Solids, 2003, 322, 100-104.	3.1	2
285	Alternative channel materials for MOS devices. , 2008, , .		2
286	Molecular Beam Epitaxy study of a common a-GeO2 interfacial passivation layer for Ge- and GaAs-based MOS heterostructures. Materials Research Society Symposia Proceedings, 2009, 1155, 1.	0.1	2
287	Shaping the future of nanoelectronics beyond the Si roadmap with new materials and devices. Proceedings of SPIE, 2010, , .	0.8	2
288	(Invited) Electron Band Alignment at Ge/Oxide and AIII-BV/Oxide Interfaces from Internal Photoemission Experiments. ECS Transactions, 2013, 58, 311-316.	0.5	2

#	Article	IF	CITATIONS
289	Oxidation and Sulfidation of Germanium Surfaces: A Comparative Atomic Level Study of Different Passivation Schemes. ECS Transactions, 2013, 50, 569-579.	0.5	2
290	(Invited) Probing the Intrinsic Limitations of the Contact Resistance of Metal/Semiconductor Interfaces through Atomistic Simulations. ECS Transactions, 2017, 80, 303-311.	0.5	2
291	<i>(Invited) </i> Stoner Ferromagnetism in Two-Dimensional Materials. ECS Transactions, 2019, 92, 35-41.	0.5	2
292	Effect of Si Surface Roughness on the Current-Voltage Characteristics of Ultra-Thin Gate Oxides. Solid State Phenomena, 1999, 65-66, 249-252.	0.3	1
293	Defect generation in ultra-thin SiO2 gate layers and SiO2/ZrO2 gate stacks and the dispersive transport model. Microelectronic Engineering, 2001, 59, 367-371.	2.4	1
294	Model for NBTI in p-MOSFETs with ultra thin nitrided gated oxides. , 0, , .		1
295	Effect of fixed dielectric charges on tunnelling transparency in MIM and MIS structures. Microelectronic Engineering, 2004, 72, 90-95.	2.4	1
296	Origin and repartition of the oxide fixed charges generated by electrical stress in memory tunnel oxide. Applied Physics Letters, 2004, 84, 4251-4253.	3.3	1
297	Germanium FETs and capacitors with rare earth CeO2/HfO2 gates. , 2006, , .		1
298	Impact of defects on the high-κ/MG stack: The electrical characterization challenge. Materials Science in Semiconductor Processing, 2006, 9, 880-884.	4.0	1
299	A Step Towards a Better Understanding of Silicon Passivated (100)Ge p-Channel Devices. ECS Transactions, 2007, 6, 53-63.	0.5	1
300	Electrical Characterization of Advanced Gate Dielectrics. , 0, , 371-435.		1
301	High-k Dielectrics and Interface Passivation for Ge and III/V Devices on Silicon for Advanced CMOS. ECS Transactions, 2009, 25, 51-65.	0.5	1
302	Theoretical Study of Ge Dangling Bonds in GeO ₂ and Correlation with ESR Results at Ge/GeO ₂ Interfaces. ECS Transactions, 2011, 41, 39-45.	0.5	1
303	Electron States at Interfaces of Semiconductors and Metals with Insulating Films. ECS Transactions, 2011, 34, 467-472.	0.5	1
304	Internal Photoemission at Interaces of ALD TaiOxInsulating Layers Deposited on Si, InP and In0.53Ga0.47As. IOP Conference Series: Materials Science and Engineering, 2012, 41, 012019.	0.6	1
305	(Invited) Optimization of WAl2O3Cu(-Te) Material Stack for High-Performance Conductive-Bridging Memory Cells. ECS Transactions, 2013, 58, 175-180.	0.5	1
306	Interaction of Germanene with (0001)ZnSe Surfaces: A Theoretical Study. ECS Transactions, 2013, 58, 209-215.	0.5	1

#	Article	IF	CITATIONS
307	(Invited) Interaction of Silicene and Germanene with Non-Metallic Substrates. ECS Transactions, 2014, 64, 111-119.	0.5	1
308	Electron energy distribution in Si/TiN and Si/Ru hybrid floating gates with hafnium oxide based insulators for charge trapping memory devices. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 265-269.	1.8	1
309	Interaction Between Silicene and Non-metallic Surfaces. Springer Series in Materials Science, 2016, , 129-140.	0.6	1
310	First-principles investigation of defects at GaAs/oxide interfaces. Materials Science in Semiconductor Processing, 2016, 42, 239-241.	4.0	1
311	On the Key Impact of Composition of Ge-Te and Ge-Se Electrolytes on CBRAM Properties. , 2018, , .		1
312	Internal photoemission of electrons from 2D semiconductor/3D metal barrier structures. Journal Physics D: Applied Physics, 2021, 54, 295101.	2.8	1
313	Structural and electronic rearrangement in ovonic switching GexSe1-x(0,4Ââ‰ÂxÂâ‰Â0,72) films. Solid-State Electronics, 2021, 186, 108084.	1.4	1
314	Germanium Deep-Submicron p-FET and n-FET Devices, Fabricated on Germanium-On-Insulator Substrates. , 2007, , 333-340.		1
315	Electrical Properties of Metal-Insulator-Semiconductor Devices with High Permittivity Gate Dielectric Layers. , 2000, , 1-20.		1
316	High Mobility Channels. Springer Series in Advanced Microelectronics, 2013, , 425-457.	0.3	1
317	Charge Properties of Paramagnetic Defects in Semiconductor/Oxide Structures. , 2014, , 229-252.		1
318	Effect of Fluctuations on the Thermal Conductivity of High-TC Superconductors. , 1997, , 101-111.		1
319	On the elastic tensors of ultra-thin films: A study of ruthenium. Applied Surface Science, 2022, 592, 153194.	6.1	1
320	Modeling Soft Breakdown of Ultra-Thin Gate Oxide Layers. Materials Research Society Symposia Proceedings, 1999, 567, 307.	0.1	0
321	Influence of Pre and Post Process Conditions on the Composition of Thin Si3N4 Thin Films (3 nm) Studied by XPS and TOFSIMS. Materials Research Society Symposia Proceedings, 1999, 592, 89.	0.1	0
322	Single Wafer CVD of Silicon Nitride for Cmos Gate Applications. Materials Research Society Symposia Proceedings, 1999, 567, 147.	0.1	0
323	[100]Si with ultrathin layers of SiO/sub 2/, Al/sub 2/O/sub 3/, and ZrO/sub 2/: electron spin resonance study. , 0, , .		0
324	Determination of oxide charge repartition in memory tunnel oxide under stress from Fowler-Nordheim current measurements. , 0, , .		0

#	Article	IF	CITATIONS
325	Electrical modeling and simulation of nanoscale MOS devices with a high-permittivity dielectric gate stack. Materials Research Society Symposia Proceedings, 2004, 811, 295.	0.1	0
326	Key Issues for the Development of a Ge CMOS Device in an Advanced IC Circuit. ECS Transactions, 2006, 3, 783-787.	0.5	0
327	Rare-Earth Metal Scandate High-k Layers. ECS Transactions, 2006, 1, 161-175.	0.5	0
328	NBTI reliability of Ni FUSI/HfSiON gates: Effect of silicide phase. Microelectronics Reliability, 2007, 47, 505-507.	1.7	0
329	Progress Towards Passivation of High-Mobility Channels. ECS Transactions, 2009, 25, 249-263.	0.5	0
330	High Mobility Channel Materials and Novel Devices for Scaling of Nanoelectronics beyond the Si Roadmap. Materials Research Society Symposia Proceedings, 2009, 1194, 49.	0.1	0
331	Quantum Simulation of C-V and I-V Characteristics in Ge and III-V Materials/High-κ MOS Devices. Materials Research Society Symposia Proceedings, 2009, 1194, 15.	0.1	0
332	Inelastic electron tunneling spectroscopy of HfO2 gate stacks: A study based on first-principles modeling. Applied Physics Letters, 2011, 99, 132101.	3.3	0
333	Electron spin resonance analysis of sputtering-induced defects in advanced low-κ insulators (κ=2.0–2.5). Microelectronic Engineering, 2013, 109, 240-243.	2.4	0
334	(Invited) Probing Dopants in 2H MoS2Crystals and 2D Layers by Electron Paramagnetic Resonance: Identification and Quantification. ECS Transactions, 2017, 80, 177-189.	0.5	0
335	Synthesis of Silicene on Alternative Substrates. Nanoscience and Technology, 2018, , 197-209.	1.5	0
336	Contact resistance at 2D metal/semiconductor heterostructures. Frontiers of Nanoscience, 2020, 17, 127-140.	0.6	0
337	High- k gate dielectrics. Series in Materials Science and Engineering, 2003, , .	0.1	0
338	Electrical characterization, modelling and simulation of MOS structures with high- k gate stacks. Series in Materials Science and Engineering, 2003, , .	0.1	0
339	Magneto transport study of a Bi2223 superconductor produced by a high-pressure method. Superconductor Science and Technology, 1996, 9, 1109-1109.	3.5	0
340	Ab-intio based electron-phonon scattering for 2D materials within the NEGF framework. , 2021, , .		0
341	Magnetic Properties and Critical Behaviour of the B-Spinel CdCr2xIn22xS4 (0.9 ≤ ≤1). Physica Status Solidi (B): Basic Research, 1999, 214, 403-409.	1.5	0