## Chengyu Li

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8064064/publications.pdf

Version: 2024-02-01

| 83<br>papers | 2,774<br>citations | 29 h-index   | 197818<br>49<br>g-index |
|--------------|--------------------|--------------|-------------------------|
| 84           | 84                 | 84           | 2142                    |
| all docs     | docs citations     | times ranked | citing authors          |

| #  | Article                                                                                                                                                                                                                                                                 | IF           | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 1  | Single-phase white-emitting and tunable color phosphor Na3Sc2(PO4)3:Eu2+,Dy3+: Synthesis, luminescence and energy transfer. Journal of Rare Earths, 2022, 40, 551-558.                                                                                                  | 4.8          | 10        |
| 2  | Eu3+-doped BaLiZn3(BO3)3: A novel red-emitting phosphor for blue chips excited white LEDs. Journal of Rare Earths, 2022, 40, 1014-1021.                                                                                                                                 | 4.8          | 18        |
| 3  | Effect of Pr3+ concentration on the luminescent properties of Ca2LuScGa2Ge2O12 compound with garnet structure. Journal of Solid State Chemistry, 2022, 306, 122758.                                                                                                     | 2.9          | 4         |
| 4  | A highly efficient narrow-band blue phosphor of Bi3+-activated cubic borate Ba3Lu2B6O15 towards backlight display applications. Chemical Engineering Journal, 2022, 432, 134265.                                                                                        | 12.7         | 28        |
| 5  | Regulating chromium ions site occupancy and enhancing near-infrared luminescence properties of Sr2P2O7:Cr3+ phosphor through synthesizing under reduction atmosphere. Materials Research Bulletin, 2022, 149, 111710.                                                   | 5.2          | 10        |
| 6  | Direction-Controlled Growth of Five-Fold Ag and Ag/Au Nanocrystals: Implications for Transparent Conductive Films. ACS Applied Nano Materials, 2022, 5, 957-964.                                                                                                        | 5.0          | 3         |
| 7  | Ligand-Induced Nucleation Growth Kinetics of CdTe QDs: Implications for White-Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 401-410.                                                                                                                      | 5.0          | 3         |
| 8  | Design and synthesis of a novel blue-emitting CaNaSb <sub>2</sub> O <sub>6</sub> F:Bi <sup>3+</sup> phosphor for optical temperature sensing. Dalton Transactions, 2022, 51, 6908-6917.                                                                                 | 3.3          | 7         |
| 9  | Cr <sup>3+</sup> -doped borate phosphors for broadband near-infrared LED applications. Inorganic Chemistry Frontiers, 2022, 9, 2240-2251.                                                                                                                               | 6.0          | 27        |
| 10 | Design of a Novel Near-Infrared Luminescence Material Li <sub>2</sub> Mg <sub>3</sub> TiO <sub>6</sub> :Cr <sup>3+</sup> with an Ultrawide Tuning Range Applied to Near-Infrared Light-Emitting Diodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 3839-3850. | 6.7          | 43        |
| 11 | Efficient Cr <sup>3+</sup> -activated NaInP <sub>2</sub> O <sub>7</sub> phosphor for broadband near-infrared LED applications. Inorganic Chemistry Frontiers, 2022, 9, 3692-3701.                                                                                       | 6.0          | 13        |
| 12 | A novel near-infrared phosphor Mg <sub>2</sub> InSbO <sub>6</sub> :Cr <sup>3+</sup> with high quantum efficiency and considerable persistent luminescence duration. Journal of Materials Chemistry C, 2022, 10, 10047-10057.                                            | 5.5          | 13        |
| 13 | Enhanced blue-light excited cyan-emitting persistent luminescence of BaLu2Al2Ga2SiO12:Ce3+, Bi3+ phosphors for AC-LEDs via defect modulation. Light: Science and Applications, 2022, 11, .                                                                              | 16.6         | 39        |
| 14 | Double perovskite Cs <sub>2</sub> NaInCl <sub>6</sub> nanocrystals with intense dual-emission <i>via</i> self-trapped exciton-to-Tb <sup>3+</sup> dopant energy transfer. Journal of Materials Chemistry C, 2022, 10, 10609-10615.                                      | 5 <b>.</b> 5 | 32        |
| 15 | Low-concentration Ce3+-activated ScCaO(BO3) blue-cyan phosphor with high efficiency toward full-spectrum white LED applications. Materials Today Chemistry, 2022, 26, 101030.                                                                                           | 3.5          | 12        |
| 16 | Synthesis, structure and optical properties of novel thermally robust Dy3+-doped Ca9Sc(PO4)7 phosphors for NUV-excited white LEDs. Journal of Rare Earths, 2021, 39, 277-283.                                                                                           | 4.8          | 21        |
| 17 | Tunable ultra-uniform Cs <sub>4</sub> PbBr <sub>6</sub> perovskites with efficient photoluminescence and excellent stability for high-performance white light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12811-12818.                                  | 5.5          | 4         |
| 18 | Multivariant ligands stabilize anionic solvent-oriented $\hat{l}_{\pm}$ -CsPbX $<$ sub $>3<$ /sub $>$ nanocrystals at room temperature. Nanoscale, 2021, 13, 4899-4910.                                                                                                 | 5.6          | 9         |

| #  | Article                                                                                                                                                                                                                                                                                        | IF          | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 19 | Investigation on the photoluminescence and thermoluminescence of BaGa <sub>2</sub> O <sub>4</sub> 3+ at extremely low temperatures. Journal of Materials Chemistry C, 2021, 9, 1786-1793.                                                                                                      | <b>5.</b> 5 | 18        |
| 20 | Intense UV long persistent luminescence benefiting from the coexistence of Pr <sup>3+</sup> /Pr <sup>4+</sup> in a praseodymium-doped BaLu <sub>2</sub> Al <sub>2</sub> Ga <sub>2</sub> SiO <sub>12</sub> phosphor. Journal of Materials Chemistry C, 2021, 9, 5206-5216.                      | 5.5         | 31        |
| 21 | Design of broadband near-infrared Y <sub>0.57</sub> La <sub>0.72</sub> Sc <sub>2.71</sub> (BO <sub>3</sub> ) <sub>4</sub> :Cr <sup>3+</sup> phosphors based on one-site occupation and their application in NIR light-emitting diodes. Journal of Materials Chemistry C. 2021, 9, 11761-11771. | 5.5         | 46        |
| 22 | Tuning emission color and improving the warm-white persistent luminescence of phosphor BaLu <sub>2</sub> Al <sub>2</sub> Ga <sub>2</sub> SiO <sub>12</sub> :Pr <sup>3+</sup> <i>via</i> Zn <sup>2+</sup> co-doping. Dalton Transactions, 2021, 50, 12137-12146.                                | 3.3         | 7         |
| 23 | In Situ Embedding Synthesis of Highly Stable<br>CsPbBr <sub>3</sub> /CsPb <sub>2</sub> Br <sub>5</sub> @PbBr(OH) Nano/Microspheres through Water<br>Assisted Strategy. Advanced Functional Materials, 2021, 31, 2103275.                                                                       | 14.9        | 42        |
| 24 | Yolk–shell nanoarchitecture for stabilizing a Ce <sub>2</sub> S <sub>3</sub> anode., 2021, 3, 709-720.                                                                                                                                                                                         |             | 17        |
| 25 | Embellishment of Upconversion Nanoparticles with Ultrasmall Perovskite Quantum Dots for Fullâ€Color Tunable, Dualâ€Modal Luminescence Anticounterfeiting. Advanced Optical Materials, 2021, 9, 2100814.                                                                                        | 7.3         | 31        |
| 26 | Design of white-emitting optical temperature sensor based on energy transfer in a Bi <sup>3+</sup> , Eu <sup>3+</sup> and Tb <sup>3+</sup> doped YBO <sub>3</sub> crystal. Journal of Materials Chemistry C, 2021, 9, 7264-7273.                                                               | 5.5         | 24        |
| 27 | Synthesis and luminescence properties of a broadband near-infrared emitting non-gallate persistent luminescence Mg <sub>1.4</sub> Zn <sub>0.6</sub> SnO <sub>4</sub> :Cr <sup>3+</sup> phosphor. Dalton Transactions, 2021, 50, 5666-5675.                                                     | 3.3         | 13        |
| 28 | Back Cover Image, Volume 3, Number 5, October 2021., 2021, 3, ii.                                                                                                                                                                                                                              |             | 0         |
| 29 | Simultaneous Enhancement of Photoluminescence and Stability of CsPbCl <sub>3</sub> Perovskite Enabled by Titanium Ion Dopant. Journal of Physical Chemistry Letters, 2021, 12, 10746-10752.                                                                                                    | 4.6         | 12        |
| 30 | Decoration of upconversion nanocrystals with metal sulfide quantum dots by a universal <i>in situ</i> controlled growth strategy. Nanoscale, 2020, 12, 3977-3987.                                                                                                                              | 5.6         | 13        |
| 31 | Design of a mixed-anionic-ligand system for a blue-light-excited orange-yellow emission phosphor Ba <sub>1.31</sub> Sr <sub>3.69</sub> (BO <sub>3</sub> ) <sub>3</sub> Cl:Eu <sup>2+</sup> . Journal of Materials Chemistry C, 2020, 8, 3040-3050.                                             | 5.5         | 31        |
| 32 | Study of a color-tunable long afterglow phosphor Gd <sub>1.5</sub> Y <sub>1.5</sub> Gd <sub>3</sub> Al <sub>2</sub> O <sub>12</sub> :Tb <sup>3+</sup> : luminescence properties and mechanism. RSC Advances, 2020, 10, 28049-28058.                                                            | 3.6         | 15        |
| 33 | Ionic liquid-assisted hydrothermal synthesis and luminescence properties of Na3Y1â^'x(PO4)2: xTb3+ phosphors. Journal of Materials Science: Materials in Electronics, 2020, 31, 19159-19167.                                                                                                   | 2.2         | 4         |
| 34 | Lanthanide-doped bismuth-based fluoride nanoparticles: controlled synthesis and ratiometric temperature sensing. CrystEngComm, 2020, 22, 3432-3438.                                                                                                                                            | 2.6         | 10        |
| 35 | Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. Plant Methods, 2020, 16, 54.                                                                                                                                                        | 4.3         | 36        |
| 36 | Carbon Dots-in-Zeolite via In-Situ Solvent-Free Thermal Crystallization: Achieving High-Efficiency and Ultralong Afterglow Dual Emission. CCS Chemistry, 2020, 2, 118-127.                                                                                                                     | 7.8         | 50        |

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Selective enhancement of green upconversion luminescence from NaYF4:Yb, Er microparticles through Ga3+ doping for sensitive temperature sensing. Journal of Luminescence, 2019, 215, 116632.                                                                                      | 3.1  | 26        |
| 38 | Structural Micromodulation on Bi <sup>3+</sup> -Doped Ba <sub>2</sub> Ga <sub>2</sub> GeO <sub>7</sub> Phosphor with Considerable Tunability of the Defect-Oriented Optical Properties. ACS Applied Electronic Materials, 2019, 1, 229-237.                                       | 4.3  | 67        |
| 39 | Commendable Pr <sup>3+</sup> -activated Ba <sub>2</sub> Ga <sub>2</sub> GeO <sub>7</sub> phosphor with high-brightness white long-persistent luminescence. Journal of Materials Chemistry C, 2019, 7, 6698-6705.                                                                  | 5.5  | 44        |
| 40 | Energy transfer and luminescence properties of a green-to-red color tunable phosphor Sr8MgY(PO4)7:Tb3+,Eu3+. Journal of Materials Science: Materials in Electronics, 2019, 30, 9421-9428.                                                                                         | 2.2  | 10        |
| 41 | A strategy for developing thermal-quenching-resistant emission and super-long persistent luminescence in BaGa <sub>2</sub> O <sub>4</sub> :Bi <sup>3+</sup> . Journal of Materials Chemistry C, 2019, 7, 13088-13096.                                                             | 5.5  | 42        |
| 42 | Oneâ€Dimensional Fe <sub>2</sub> P Acts as a Fenton Agent in Response to NIRâ€II Light and Ultrasound for Deep Tumor Synergetic Theranostics. Angewandte Chemie, 2019, 131, 2429-2434.                                                                                            | 2.0  | 44        |
| 43 | Oneâ€Dimensional Fe <sub>2</sub> P Acts as a Fenton Agent in Response to NIRâ€II Light and Ultrasound for Deep Tumor Synergetic Theranostics. Angewandte Chemie - International Edition, 2019, 58, 2407-2412.                                                                     | 13.8 | 315       |
| 44 | Electronic structure and photoluminescence properties of a novel single-phased color tunable phosphor KAlGeO4:Bi3+,Eu3+ for WLEDs. Journal of Alloys and Compounds, 2019, 774, 477-486.                                                                                           | 5.5  | 69        |
| 45 | Preparation and luminescence properties of orange-red Ba 3 Y 4 O 9 :Sm 3+ phosphors. Journal of Rare Earths, 2018, 36, 680-684.                                                                                                                                                   | 4.8  | 45        |
| 46 | A new blue long-lasting phosphorescence phosphor Mg2SnO4:Bi3+: synthesis and luminescence properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 4163-4170.                                                                                                | 2.2  | 10        |
| 47 | Origin of Color Centers in the Perovskite Oxide CeAlO <sub>3</sub> . ChemPlusChem, 2018, 83, 976-983.                                                                                                                                                                             | 2.8  | 8         |
| 48 | Synthesis and Luminescence Properties of Bi <sup>3+</sup> -Activated K <sub>2</sub> MgGeO <sub>4</sub> : A Promising High-Brightness Orange-Emitting Phosphor for WLEDs Conversion. Inorganic Chemistry, 2018, 57, 12303-12311.                                                   | 4.0  | 142       |
| 49 | Developing near-infrared long-lasting phosphorescence of Yb <sup>3+</sup> through a medium: insights into energy transfer in the novel material Zn <sub>1.98</sub> Li <sub>0.02</sub> P <sub>2</sub> O <sub>7</sub> :Yb <sup>3+</sup> . Dalton Transactions, 2018, 47, 9814-9823. | 3.3  | 9         |
| 50 | Sr <sub>1.7</sub> Zn <sub>0.3</sub> CeO <sub>4</sub> F <sub>0.2</sub> :Eu <sup>3+</sup> : novel dual-emission temperature sensors for remote, noncontact thermometric application. RSC Advances, 2017, 7, 9645-9652.                                                              | 3.6  | 7         |
| 51 | Precise Control of the Lateral and Vertical Growth of Twoâ€Dimensional Ag Nanoplates. Chemistry - A European Journal, 2017, 23, 10001-10006.                                                                                                                                      | 3.3  | 7         |
| 52 | A self-defined intermediate product captured from the evolution process from a six-pod to an octahedral PbS sub-micrometer particle. CrystEngComm, 2017, 19, 2195-2201.                                                                                                           | 2.6  | 4         |
| 53 | Investigation of a novel color tunable long afterglow phosphor KGaGeO <sub>4</sub> :Bi <sup>3+</sup> : luminescence properties and mechanism. Journal of Materials Chemistry C, 2017, 5, 1346-1355.                                                                               | 5.5  | 83        |
| 54 | Intense red–green up-conversion emission and their mechanisms of SrO: Er3+/Yb3+, Gd3+, Lu3+, Bi3+. Journal of Luminescence, 2017, 181, 240-245.                                                                                                                                   | 3.1  | 14        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IF  | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and Photoluminescence Properties of a Redâ€Emitting Phosphor Sr <sub>9</sub> Mg <sub>1.5</sub> (PO <sub>4</sub> ) <sub>7</sub> :Eu <sup>3+</sup> . ChemistrySelect, 2016, 1, 462-468.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5 | 12        |
| 56 | Material and Ingenious Synthesis Strategy for Short-Wavelength Infrared Light-Emitting Device. Inorganic Chemistry, 2016, 55, 11258-11263.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0 | 6         |
| 57 | A novel dichromic self-referencing optical probe SrO:Bi <sup>3+</sup> ,Eu <sup>3+</sup> for temperature spatially and temporally imaging. Dalton Transactions, 2016, 45, 13317-13323.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.3 | 15        |
| 58 | Sunlight activated new long persistent luminescence phosphor BaSiO 3 :Eu 2+ ,Nd 3+ ,Tm 3+ : Optical properties and mechanism. Materials and Design, 2016, 90, 218-224.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0 | 42        |
| 59 | Reduction of Eu <sup>3+</sup> due to a change of the topological structure of the BO <sub>3</sub> unit in borate glass. Dalton Transactions, 2015, 44, 17916-17919.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3 | 4         |
| 60 | A convenient and efficient synthesis method to improve the emission intensity of rare earth ion doped phosphors: the synthesis and luminescent properties of novel SrO:Ce <sup>3+</sup> phosphor. RSC Advances, 2015, 5, 93951-93956.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.6 | 17        |
| 61 | Sr <sub>9</sub> Mg <sub>1.5</sub> (PO <sub>4</sub> ) <sub>7</sub> :Eu <sup>2+</sup> : A Novel Broadband Orange-Yellow-Emitting Phosphor for Blue Light-Excited Warm White LEDs. ACS Applied Materials & amp; Interfaces, 2015, 7, 25219-25226.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.0 | 110       |
| 62 | Tri-chromatic white-light emission from a single-phase Ca <sub>9</sub> Sc(PO <sub>4</sub> ) <sub>7</sub> :Eu <sup>2+</sup> ,Tb <sup>3+</sup> ,Mn <sup>2+</sup> phosphor for LED applications. Dalton Transactions, 2015, 44, 17241-17250.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3 | 66        |
| 63 | Luminescence properties of a novel reddish orange long-lasting phosphorescence phosphor Zn <sub>2</sub> P <sub>2</sub> O <sub>7</sub> :Sm <sup>3+</sup> ,Li <sup>+</sup> . RSC Advances, 2015, 5, 82704-82710.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6 | 25        |
| 64 | Influence of charge compensators on photoluminescence properties of Sr2CeO4:Eu3+. Materials Letters, 2015, 139, 258-261.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.6 | 14        |
| 65 | Tunable long lasting phosphorescence due to the selective energy transfer from defects to luminescent centres via tunnelling in Mn2+ and Tm3+ co-doped zinc pyrophosphate. Dalton Transactions, 2014, 43, 9661.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3 | 33        |
| 66 | Local Supersaturation Dictated Branching and Faceting of Submicrometer PbS Particles with Cubic Growth Habit. Inorganic Chemistry, 2014, 53, 11484-11491.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0 | 12        |
| 67 | Sr <sub>1.7</sub> Zn <sub>0.3</sub> CeO <sub>4</sub> : Eu <sup>3+</sup> Novel Red-Emitting Phosphors: Synthesis and Photoluminescence Properties. ACS Applied Materials & Synthesis and Photoluminescence Properties. ACS Applied Materials & Synthesis & Syn | 8.0 | 143       |
| 68 | A novel green long-lasting phosphorescence phosphor Ca14Mg2(SiO4)8:Eu2+, Dy3+. Optical Materials, 2014, 36, 1841-1845.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6 | 6         |
| 69 | Novel energy transfer mechanism in single-phased color-tunable Sr2CeO4:Eu3+ phosphors for WLEDs. Optical Materials, 2014, 36, 1883-1889.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6 | 18        |
| 70 | Luminescence properties of a new bluish green long-lasting phosphorescence phosphor Ca9Bi(PO4)7:Eu2+,Dy3+. Optical Materials, 2014, 36, 1781-1786.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.6 | 17        |
| 71 | Eu3+ doped Sr2CeO4 phosphors for thermometry: single-color or two-color fluorescence based temperature characterization. RSC Advances, 2011, 1, 298.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.6 | 30        |
| 72 | Energy transfer and excitation wavelength dependent long-lasting phosphorescence in Pr3+ activated Y3Al5O12. Journal of Luminescence, 2011, 131, 2730-2734.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1 | 21        |

## CHENGYU LI

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Green photoluminescence, but blue afterglow of Tb3+ activated Sr4Al14O25. Journal of Luminescence, 2010, 130, 2223-2225.                                                                                  | 3.1 | 22        |
| 74 | Reddish orange long lasting phosphorescence of Sm3+ in Sr2ZnSi2O7:Sm3+ phosphors. Journal of Rare Earths, 2010, 28, 705-708.                                                                              | 4.8 | 34        |
| 75 | Effects of distorted lattice and nonequal-valvence substitution on the long lasting phosphorescence of Eu2+ and Gd3+ doped RMg2(PO4)2 (R=Sr,Ba) phosphors. Journal of Applied Physics, 2010, 108, 043101. | 2.5 | 14        |
| 76 | Luminescent properties of a new blue long-lasting phosphor Ca2P2O7:Eu2+, Y3+. Materials Chemistry and Physics, 2009, 113, 215-218.                                                                        | 4.0 | 47        |
| 77 | A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+. Journal of Physics and Chemistry of Solids, 2009, 70, 303-306.                                                                | 4.0 | 199       |
| 78 | Blue long lasting phosphorescence of Tm3+ in zinc pyrophosphate phosphor. Journal of Alloys and Compounds, 2009, 471, 364-367.                                                                            | 5.5 | 39        |
| 79 | Near infrared long lasting emission of Yb3+ and its influence on the optical storage ability of Mn2+-activated zinc borosilicate glasses. Journal of Applied Physics, 2007, 101, 113304.                  | 2.5 | 11        |
| 80 | Redshift phenomenon of the excitation light of long life emission phosphor. Applied Physics Letters, 2006, 88, 241107.                                                                                    | 3.3 | 20        |
| 81 | Thermoluminescence characteristics of terbium-doped Ba2Ca(BO3)2phosphor. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 2800-2806.                                              | 1.8 | 46        |
| 82 | Photo-stimulated long-lasting phosphorescence in Mn2+-doped zinc borosilicate glasses. Journal of Non-Crystalline Solids, 2003, 321, 191-196.                                                             | 3.1 | 54        |
| 83 | Multi-color long-lasting phosphorescence in Mn2+-doped ZnO–B2O3–SiO2 glass–ceramics. Materials<br>Research Bulletin, 2002, 37, 1443-1449.                                                                 | 5.2 | 55        |