Matthew K Waldor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8063911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin. Science, 1996, 272, 1910-1914.	6.0	1,672
2	SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature, 2004, 427, 72-74.	13.7	911
3	Origins of the <i>E. coli</i> Strain Causing an Outbreak of Hemolytic–Uremic Syndrome in Germany. New England Journal of Medicine, 2011, 365, 709-717.	13.9	778
4	The Origin of the Haitian Cholera Outbreak Strain. New England Journal of Medicine, 2011, 364, 33-42.	13.9	676
5	Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nature Reviews Microbiology, 2010, 8, 552-563.	13.6	674
6	Vibrio spp. infections. Nature Reviews Disease Primers, 2018, 4, 1-19.	18.1	572
7	Quinolone Antibiotics Induce Shiga Toxin–Encoding Bacteriophages, Toxin Production, and Death in Mice. Journal of Infectious Diseases, 2000, 181, 664-670.	1.9	530
8	D-Amino Acids Govern Stationary Phase Cell Wall Remodeling in Bacteria. Science, 2009, 325, 1552-1555.	6.0	519
9	Targeting QseC Signaling and Virulence for Antibiotic Development. Science, 2008, 321, 1078-1080.	6.0	452
10	Bacteriophage Control of Bacterial Virulence. Infection and Immunity, 2002, 70, 3985-3993.	1.0	419
11	Fucose sensing regulates bacterial intestinal colonization. Nature, 2012, 492, 113-117.	13.7	410
12	Shaping bacterial genomes with integrative and conjugative elements. Research in Microbiology, 2004, 155, 376-386.	1.0	402
13	A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. Journal of Bacteriology, 1996, 178, 4157-4165.	1.0	365
14	Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nature Biotechnology, 2012, 30, 1232-1239.	9.4	365
15	Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cellular and Molecular Life Sciences, 2011, 68, 817-831.	2.4	311
16	Molecular Analysis of Antibiotic Resistance Gene Clusters in Vibrio cholerae O139 and O1 SXT Constins. Antimicrobial Agents and Chemotherapy, 2001, 45, 2991-3000.	1.4	300
17	Regulation and Temporal Expression Patterns of Vibrio cholerae Virulence Genes during Infection. Cell, 1999, 99, 625-634.	13.5	281
18	Distinct pathways for modification of the bacterial cell wall by non-canonical <scp>D</scp> -amino acids. EMBO Journal, 2011, 30, 3442-3453.	3.5	259

#	Article	IF	CITATIONS
19	Comparative ICE Genomics: Insights into the Evolution of the SXT/R391 Family of ICEs. PLoS Genetics, 2009, 5, e1000786.	1.5	247
20	Genomic and Functional Analyses of SXT, an Integrating Antibiotic Resistance Gene Transfer Element Derived from Vibrio cholerae. Journal of Bacteriology, 2002, 184, 4259-4269.	1.0	235
21	Role for a Phage Promoter in Shiga Toxin 2 Expression from a Pathogenic Escherichia coli Strain. Journal of Bacteriology, 2001, 183, 2081-2085.	1.0	234
22	Hfq is essential for Vibrio cholerae virulence and downregulates σE expression. Molecular Microbiology, 2004, 53, 345-354.	1.2	232
23	Distribution of Centromere-Like <i>parS</i> Sites in Bacteria: Insights from Comparative Genomics. Journal of Bacteriology, 2007, 189, 8693-8703.	1.0	231
24	A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes and Development, 2006, 20, 3269-3282.	2.7	227
25	Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host and Microbe, 2013, 14, 652-663.	5.1	226
26	Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Molecular Microbiology, 2002, 44, 957-970.	1.2	212
27	Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Molecular Microbiology, 1999, 32, 99-110.	1.2	209
28	The current ICE age: Biology and evolution of SXT-related integrating conjugative elements. Plasmid, 2006, 55, 173-183.	0.4	208
29	Phage regulatory circuits and virulence gene expression. Current Opinion in Microbiology, 2005, 8, 459-465.	2.3	201
30	The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11388-11392.	3.3	200
31	Regulation, replication, and integration functions of the Vibrio cholerae CTXφ are encoded by region RS2. Molecular Microbiology, 1997, 24, 917-926.	1.2	200
32	Filamentous phages linked to virulence of Vibrio cholerae. Current Opinion in Microbiology, 2003, 6, 35-42.	2.3	194
33	High-Throughput, Kingdom-Wide Prediction and Annotation of Bacterial Non-Coding RNAs. PLoS ONE, 2008, 3, e3197.	1.1	192
34	A Toxin–Antitoxin System Promotes the Maintenance of an Integrative Conjugative Element. PLoS Genetics, 2009, 5, e1000439.	1.5	191
35	RNA-Seq-Based Monitoring of Infection-Linked Changes in Vibrio cholerae Gene Expression. Cell Host and Microbe, 2011, 10, 165-174.	5.1	191
36	The design and analysis of transposon insertion sequencing experiments. Nature Reviews Microbiology, 2016, 14, 119-128.	13.6	180

#	Article	IF	CITATIONS
37	A hybrid approach for the automated finishing of bacterial genomes. Nature Biotechnology, 2012, 30, 701-707.	9.4	178
38	Filamentous phage integration requires the host recombinases XerC and XerD. Nature, 2002, 417, 656-659.	13.7	175
39	Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Research, 2006, 34, 3484-3493.	6.5	175
40	Identification of small RNAs in diverse bacterial species. Current Opinion in Microbiology, 2007, 10, 96-101.	2.3	173
41	Analysis of the Genome of the <i>Escherichia coli</i> O157:H7 2006 Spinach-Associated Outbreak Isolate Indicates Candidate Genes That May Enhance Virulence. Infection and Immunity, 2009, 77, 3713-3721.	1.0	163
42	Insights into Vibrio cholerae Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria. PLoS Pathogens, 2014, 10, e1004405.	2.1	158
43	Distinct Replication Requirements for the Two Vibrio cholerae Chromosomes. Cell, 2003, 114, 521-530.	13.5	157
44	Emergence of a New Cholera Pandemic: Molecular Analysis of Virulence Determinants in Vibrio cholerae 0139 and Development of a Live Vaccine Prototype. Journal of Infectious Diseases, 1994, 170, 278-283.	1.9	154
45	A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole. Genes and Development, 2012, 26, 2348-2360.	2.7	154
46	Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nature Microbiology, 2016, 1, 16125.	5.9	151
47	Critical Roles for stx 2 , eae , and tir in Enterohemorrhagic Escherichia coli -Induced Diarrhea and Intestinal Inflammation in Infant Rabbits. Infection and Immunity, 2003, 71, 7129-7139.	1.0	149
48	The Vibrio cholerae ToxR-Regulated Porin OmpU Confers Resistance to Antimicrobial Peptides. Infection and Immunity, 2004, 72, 3577-3583.	1.0	148
49	Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Research, 2009, 37, e46-e46.	6.5	148
50	ARTIST: High-Resolution Genome-Wide Assessment of Fitness Using Transposon-Insertion Sequencing. PLoS Genetics, 2014, 10, e1004782.	1.5	148
51	ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infection and Immunity, 1994, 62, 72-78.	1.0	148
52	Inflammation and Disintegration of Intestinal Villi in an Experimental Model for Vibrio parahaemolyticus-Induced Diarrhea. PLoS Pathogens, 2012, 8, e1002593.	2.1	146
53	MicroReview: Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Molecular Microbiology, 2005, 56, 1129-1138.	1.2	139
54	Deciphering functional redundancy in the human microbiome. Nature Communications, 2020, 11, 6217.	5.8	139

#	Article	IF	CITATIONS
55	In Vivo Transduction with Shiga Toxin 1-Encoding Phage. Infection and Immunity, 1998, 66, 4496-4498.	1.0	136
56	Infectious CTXΦ and the Vibrio Pathogenicity Island Prophage in Vibrio mimicus : Evidence for Recent Horizontal Transfer between V. mimicus and V. cholerae. Infection and Immunity, 2000, 68, 1507-1513.	1.0	130
57	Characterization of the Small Untranslated RNA RyhB and Its Regulon in Vibrio cholerae. Journal of Bacteriology, 2005, 187, 4005-4014.	1.0	126
58	Mapping the ecological networks of microbial communities. Nature Communications, 2017, 8, 2042.	5.8	125
59	Human Neutrophils and Their Products Induce Shiga Toxin Production by Enterohemorrhagic Escherichia coli. Infection and Immunity, 2001, 69, 1934-1937.	1.0	121
60	Analysis of Bottlenecks in Experimental Models of Infection. PLoS Pathogens, 2015, 11, e1004823.	2.1	121
61	CTXÂ immunity: Application in the development of cholera vaccines. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7035-7039.	3.3	117
62	CTX Prophages in Classical Biotype Vibrio cholerae: Functional Phage Genes but Dysfunctional Phage Genomes. Journal of Bacteriology, 2000, 182, 6992-6998.	1.0	116
63	High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model–based analyses of transposon-insertion sequencing data. Nucleic Acids Research, 2013, 41, 9033-9048.	6.5	115
64	Where Next for Microbiome Research?. PLoS Biology, 2015, 13, e1002050.	2.6	115
65	Mobile Antibiotic Resistance Encoding Elements Promote Their Own Diversity. PLoS Genetics, 2009, 5, e1000775.	1.5	113
66	Mobilization of Plasmids and Chromosomal DNA Mediated by the SXT Element, a Constin Found in Vibrio cholerae O139. Journal of Bacteriology, 2000, 182, 2043-2047.	1.0	112
67	Entering the era of bacterial epigenomics with single molecule real time DNA sequencing. Current Opinion in Microbiology, 2013, 16, 192-198.	2.3	112
68	Convergence of the Secretory Pathways for Cholera Toxin and the Filamentous Phage, CTX. Science, 2000, 288, 333-335.	6.0	111
69	RNase E-dependent processing stabilizes MicX, a Vibrio cholerae sRNA. Molecular Microbiology, 2007, 65, 373-385.	1.2	109
70	A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO Journal, 2002, 21, 4240-4249.	3.5	108
71	Distinct segregation dynamics of the two Vibrio cholerae chromosomes. Molecular Microbiology, 2004, 55, 125-136.	1.2	106
72	CTXφ Infection of Vibrio cholerae Requires the tolQRA Gene Products. Journal of Bacteriology, 2000, 182, 1739-1747.	1.0	105

#	Article	IF	CITATIONS
73	Control of SXT Integration and Excision. Journal of Bacteriology, 2003, 185, 5045-5054.	1.0	105
74	Meeting Cholera's Challenge to Haiti and the World: A Joint Statement on Cholera Prevention and Care. PLoS Neglected Tropical Diseases, 2011, 5, e1145.	1.3	105
75	The <i>Vibrio cholerae</i> O139 Calcutta Bacteriophage CTXφ Is Infectious and Encodes a Novel Repressor. Journal of Bacteriology, 1999, 181, 6779-6787.	1.0	105
76	Antimicrobial peptides activate the Vibrio cholerae ?Eregulon through an OmpU-dependent signalling pathway. Molecular Microbiology, 2007, 63, 848-58.	1.2	104
77	Transcription of the Toxin Genes Present within the Staphylococcal Phage φSa3ms Is Intimately Linked with the Phage's Life Cycle. Journal of Bacteriology, 2003, 185, 6841-6851.	1.0	102
78	sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes. Nucleic Acids Research, 2005, 33, 4096-4105.	6.5	100
79	Sequence tag–based analysis of microbial population dynamics. Nature Methods, 2015, 12, 223-226.	9.0	100
80	Genetic analysis of <i>Vibrio parahaemolyticus</i> intestinal colonization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6283-6288.	3.3	100
81	Bacterial Adrenergic Sensors Regulate Virulence of Enteric Pathogens in the Gut. MBio, 2016, 7, .	1.8	100
82	Back to the Future: Studying Cholera Pathogenesis Using Infant Rabbits. MBio, 2010, 1, .	1.8	99
83	Bacteriophage biology and bacterial virulence. Trends in Microbiology, 1998, 6, 295-297.	3.5	96
84	Isogenic Lysogens of Diverse Shiga Toxin 2-Encoding Bacteriophages Produce Markedly Different Amounts of Shiga Toxin. Infection and Immunity, 1999, 67, 6710-6714.	1.0	96
85	<i>Vibrio cholerae</i> Intestinal Population Dynamics in the Suckling Mouse Model of Infection. Infection and Immunity, 1999, 67, 3733-3739.	1.0	96
86	A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. Genes and Development, 2011, 25, 1544-1555.	2.7	95
87	LexA Cleavage Is Required for CTX Prophage Induction. Molecular Cell, 2005, 17, 291-300.	4.5	93
88	Formation of Chromosomal Tandem Arrays of the SXT Element and R391, Two Conjugative Chromosomally Integrating Elements That Share an Attachment Site. Journal of Bacteriology, 2001, 183, 1124-1132.	1.0	92
89	Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cellular and Molecular Life Sciences, 2002, 59, 2065-2070.	2.4	92
90	par genes and the pathology of chromosome loss in Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 630-635.	3.3	92

#	Article	IF	CITATIONS
91	CTXφ andVibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Molecular Microbiology, 2005, 57, 347-356.	1.2	88
92	Characterization of a higBA Toxin-Antitoxin Locus in Vibrio cholerae. Journal of Bacteriology, 2007, 189, 491-500.	1.0	86
93	Type III Secretion Is Essential for the Rapidly Fatal Diarrheal Disease Caused by Non-O1, Non-O139 Vibrio cholerae. MBio, 2011, 2, e00106-11.	1.8	86
94	Molecular Analyses of a Putative CTXφ Precursor and Evidence for Independent Acquisition of Distinct CTXφs by Toxigenic Vibrio cholerae. Journal of Bacteriology, 2000, 182, 5530-5538.	1.0	85
95	Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nature Communications, 2015, 6, 7438.	5.8	82
96	Peptidoglycan synthesis in <i>Mycobacterium tuberculosis</i> is organized into networks with varying drug susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13087-13092.	3.3	82
97	The Locus of Enterocyte Effacement-Encoded Effector Proteins All Promote Enterohemorrhagic Escherichia coli Pathogenicity in Infant Rabbits. Infection and Immunity, 2005, 73, 1466-1474.	1.0	80
98	Vibrio cholerae 0139 specific gene sequences. Lancet, The, 1994, 343, 1366.	6.3	79
99	A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 404-409.	3.3	76
100	Comparison of Shiga Toxin Production by Hemolytic-Uremic Syndrome-Associated and Bovine-Associated Shiga Toxin-Producing Escherichia coli Isolates. Applied and Environmental Microbiology, 2003, 69, 1059-1066.	1.4	75
101	Diverse CTXΦs and evolution of new pathogenic Vibrio cholerae. Lancet, The, 1998, 352, 457-458.	6.3	72
102	Independent Control of Replication Initiation of the Two Vibrio cholerae Chromosomes by DnaA and RctB. Journal of Bacteriology, 2006, 188, 6419-6424.	1.0	72
103	Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Molecular Microbiology, 1998, 28, 1247-1254.	1.2	71
104	Hfq negatively regulates type III secretion in EHEC and several other pathogens. Molecular Microbiology, 2009, 74, 347-363.	1.2	70
105	A Vibrio parahaemolyticus T3SS Effector Mediates Pathogenesis by Independently Enabling Intestinal Colonization and Inhibiting TAK1 Activation. Cell Reports, 2013, 3, 1690-1702.	2.9	70
106	The RNA degradosome promotes tRNA quality control through clearance of hypomodified tRNA. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1394-1403.	3.3	69
107	CTXphi contains a hybrid genome derived from tandemly integrated elements. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8572-8577.	3.3	68
108	plll CTX , a Predicted CTXφ Minor Coat Protein, Can Expand the Host Range of Coliphage fd To Include Vibrio cholerae. Journal of Bacteriology, 2003, 185, 1037-1044.	1.0	68

#	Article	IF	CITATIONS
109	Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen. MBio, 2013, 4, e00452-12.	1.8	68
110	Deciphering the landscape of host barriers to <i>Listeria monocytogenes</i> infection. Proceedings of the United States of America, 2017, 114, 6334-6339.	3.3	68
111	Vibrio cholerae ParE2 Poisons DNA Gyrase via a Mechanism Distinct from Other Gyrase Inhibitors. Journal of Biological Chemistry, 2010, 285, 40397-40408.	1.6	67
112	The Three <i>Vibrio cholerae</i> Chromosome II-Encoded ParE Toxins Degrade Chromosome I following Loss of Chromosome II. Journal of Bacteriology, 2011, 193, 611-619.	1.0	67
113	Classic reaction kinetics can explain complex patterns of antibiotic action. Science Translational Medicine, 2015, 7, 287ra73.	5.8	67
114	CRISPR/Cas9 Screens Reveal Requirements for Host Cell Sulfation and Fucosylation in Bacterial Type III Secretion System-Mediated Cytotoxicity. Cell Host and Microbe, 2016, 20, 226-237.	5.1	64
115	Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates The GenBank accession numbers for the sequences reported in this paper are AY078355–AY078358 Microbiology (United Kingdom), 2002, 148, 1655-1666.	0.7	63
116	Interactions between Inner Membrane Proteins in Donor and Recipient Cells Limit Conjugal DNA Transfer. Developmental Cell, 2005, 8, 963-970.	3.1	62
117	CRISPR Screen Reveals that EHEC's T3SS and Shiga Toxin Rely on Shared Host Factors for Infection. MBio, 2018, 9, .	1.8	62
118	SXT-Related Integrating Conjugative Element in New World Vibrio cholerae. Applied and Environmental Microbiology, 2006, 72, 3054-3057.	1.4	61
119	Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 79-90.	2.5	61
120	Cell Separation in Vibrio cholerae Is Mediated by a Single Amidase Whose Action Is Modulated by Two Nonredundant Activators. Journal of Bacteriology, 2014, 196, 3937-3948.	1.0	61
121	Enterohemorrhagic Escherichia coli O157:H7 gal Mutants Are Sensitive to Bacteriophage P1 and Defective in Intestinal Colonization. Infection and Immunity, 2007, 75, 1661-1666.	1.0	60
122	An Escherichia coli O157-Specific Engineered Pyocin Prevents and Ameliorates Infection by E. coli O157:H7 in an Animal Model of Diarrheal Disease. Antimicrobial Agents and Chemotherapy, 2011, 55, 5469-5474.	1.4	60
123	Sunlight-Induced Propagation of the Lysogenic Phage Encoding Cholera Toxin. Infection and Immunity, 2000, 68, 4795-4801.	1.0	58
124	Genomic and Functional Analysis of ICE <i>Pda</i> Spa1, a Fish-Pathogen-Derived SXT-Related Integrating Conjugative Element That Can Mobilize a Virulence Plasmid. Journal of Bacteriology, 2008, 190, 3353-3361.	1.0	58
125	Horizontal Transfer of Shiga Toxin and Antibiotic Resistance Genes Among <i>Escherichia coli</i> Strains in House Fly (Diptera: Muscidae) Gut. Journal of Medical Entomology, 2006, 43, 288-295.	0.9	57
126	Type 2 Secretion Promotes Enterohemorrhagic <i>Escherichia coli</i> Adherence and Intestinal Colonization. Infection and Immunity, 2008, 76, 1858-1865.	1.0	57

#	Article	IF	CITATIONS
127	Formation of SXT Tandem Arrays and SXT-R391 Hybrids. Journal of Bacteriology, 2004, 186, 2636-2645.	1.0	56
128	ParA2, a <i>Vibrio cholerae</i> chromosome partitioning protein, forms left-handed helical filaments on DNA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4590-4595.	3.3	56
129	Substrate specificity of an elongationâ€specific peptidoglycan endopeptidase and its implications for cell wall architecture and growth of <i><scp>V</scp>ibrio cholerae</i> . Molecular Microbiology, 2013, 89, 949-962.	1.2	56
130	Endopeptidase-Mediated Beta Lactam Tolerance. PLoS Pathogens, 2015, 11, e1004850.	2.1	56
131	Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Molecular Microbiology, 2004, 54, 935-947.	1.2	55
132	Reactogenicity of live-attenuated <i>Vibrio cholerae</i> vaccines is dependent on flagellins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4359-4364.	3.3	55
133	A live vaccine rapidly protects against cholera in an infant rabbit model. Science Translational Medicine, 2018, 10, .	5.8	55
134	ToxR-Independent Expression of Cholera Toxin from the Replicative Form of CTXφ. Infection and Immunity, 1998, 66, 394-397.	1.0	55
135	Vibrio cholerae Interactions with the Gastrointestinal Tract: Lessons from Animal Studies. Current Topics in Microbiology and Immunology, 2009, 337, 37-59.	0.7	54
136	Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nature Chemical Biology, 2020, 16, 964-972.	3.9	54
137	Synchronous replication initiation of the two Vibrio cholerae chromosomes. Current Biology, 2004, 14, R501-R502.	1.8	53
138	Distinct Centromere-Like parS Sites on the Two Chromosomes of Vibrio spp. Journal of Bacteriology, 2007, 189, 5314-5324.	1.0	53
139	High-resolution genetic analysis of the requirements for horizontal transmission of the ESBL plasmid from Escherichia coli O104:H4. Nucleic Acids Research, 2015, 43, 348-360.	6.5	53
140	Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nature Chemical Biology, 2016, 12, 268-274.	3.9	53
141	Pivotal role of the Francisella tularensis heat-shock sigma factor RpoH. Microbiology (United) Tj ETQq1 1 0.7843	14 rgBT /C)verlock 10 Th
142	Cholera: molecular basis for emergence and pathogenesis. FEMS Immunology and Medical Microbiology, 1997, 18, 241-248.	2.7	51
143	The SXT/R391 Family of Integrative Conjugative Elements Is Composed of Two Exclusion Groups. Journal of Bacteriology, 2007, 189, 3302-3305.	1.0	50
144	A Double, Long Polar Fimbria Mutant of Escherichia coli O157:H7 Expresses Curli and Exhibits Reduced <i>In Vivo</i> Colonization. Infection and Immunity, 2012, 80, 914-920.	1.0	50

#	Article	IF	CITATIONS
145	Horizontal Transfer of Shiga Toxin and Antibiotic Resistance Genes Among <1>Escherichia coli 1 Strains in House Fly (Diptera: Muscidae) Gut. Journal of Medical Entomology, 2006, 43, 288-295.	0.9	48
146	Differential Requirement for PBP1a and PBP1b in <i>In Vivo</i> and <i>In Vitro</i> Fitness of Vibrio cholerae. Infection and Immunity, 2014, 82, 2115-2124.	1.0	48
147	A Transmissible Plasmid-Borne Pathogenicity Island Confers Piscibactin Biosynthesis in the Fish Pathogen Photobacterium damselae subsp. piscicida. Applied and Environmental Microbiology, 2015, 81, 5867-5879.	1.4	48
148	Identification of Operators and Promoters That Control SXT Conjugative Transfer. Journal of Bacteriology, 2004, 186, 5945-5949.	1.0	46
149	Global Gene Expression and Phenotypic Analysis of a Vibrio cholerae rpoH Deletion Mutant. Journal of Bacteriology, 2007, 189, 351-362.	1.0	46
150	Critical role for a promoter discriminator in RpoS control of virulence in Edwardsiella piscicida. PLoS Pathogens, 2018, 14, e1007272.	2.1	46
151	Dam Methyltransferase Is Required for Stable Lysogeny of the Shiga Toxin (Stx2)-Encoding Bacteriophage 933W of Enterohemorrhagic <i>Escherichia coli</i> O157:H7. Journal of Bacteriology, 2008, 190, 438-441.	1.0	45
152	A Novel Peptidoglycan Binding Protein Crucial for PBP1A-Mediated Cell Wall Biogenesis in Vibrio cholerae. PLoS Genetics, 2014, 10, e1004433.	1.5	45
153	The CTXÏ• Repressor RstR Binds DNA Cooperatively to Form Tetrameric Repressor-Operator Complexes. Journal of Biological Chemistry, 2004, 279, 2640-2647.	1.6	44
154	Determinants of Entry Exclusion within Eex and TraG Are Cytoplasmic. Journal of Bacteriology, 2007, 189, 6469-6473.	1.0	44
155	ParP prevents dissociation of CheA from chemotactic signaling arrays and tethers them to a polar anchor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E255-64.	3.3	44
156	Genetic Determinants of Penicillin Tolerance in Vibrio cholerae. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	44
157	Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXφ. Molecular Microbiology, 2001, 41, 311-323.	1.2	43
158	Modulation of Peptidoglycan Synthesis by Recycled Cell Wall Tetrapeptides. Cell Reports, 2020, 31, 107578.	2.9	43
159	Time-Resolved Transposon Insertion Sequencing Reveals Genome-Wide Fitness Dynamics during Infection. MBio, 2017, 8, .	1.8	42
160	Transient Shielding of Intimin and the Type III Secretion System of Enterohemorrhagic and Enteropathogenic <i>Escherichia coli</i> by a Group 4 Capsule. Journal of Bacteriology, 2008, 190, 5063-5074.	1.0	41
161	Anaerobic nitrate reduction divergently governs population expansion of the enteropathogen Vibrio cholerae. Nature Microbiology, 2018, 3, 1346-1353.	5.9	41
162	EspF _U , a type III-translocated effector of actin assembly, fosters epithelial association and late-stage intestinal colonization by E.Âcoli O157:H7. Cellular Microbiology, 2008, 10, 836-847.	1.1	40

#	Article	IF	CITATIONS
163	Conserved small RNAs govern replication and incompatibility of a diverse new plasmid family from marine bacteria. Nucleic Acids Research, 2011, 39, 1004-1013.	6.5	40
164	High-throughput sequencing reveals suppressors of Vibrio cholerae rpoE mutations: one fewer porin is enough. Nucleic Acids Research, 2009, 37, 5757-5767.	6.5	39
165	Autotransporters but not pAA are critical for rabbit colonization by Shiga toxin-producing Escherichia coli O104:H4. Nature Communications, 2014, 5, 3080.	5.8	39
166	Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Research, 2014, 42, 12212-12223.	6.5	38
167	Reciprocal Regulation of Resistance-Nodulation-Division Efflux Systems and the Cpx Two-Component System in Vibrio cholerae. Infection and Immunity, 2014, 82, 2980-2991.	1.0	38
168	High-throughput fitness screening and transcriptomics identify a role for a type IV secretion system in the pathogenesis of Crohn's disease-associated Escherichia coli. Nature Communications, 2021, 12, 2032.	5.8	38
169	The <i>Vibrio parahaemolyticus</i> effector VopC mediates Cdc42-dependent invasion of cultured cells but is not required for pathogenicity in an animal model of infection. Cellular Microbiology, 2014, 16, 938-947.	1.1	37
170	Host-microbe cross-talk governs amino acid chirality to regulate survival and differentiation of B cells. Science Advances, 2021, 7, .	4.7	37
171	Use of Representational Difference Analysis To Identify Genomic Differences between Pathogenic Strains of <i>Vibrio cholerae</i> . Infection and Immunity, 1998, 66, 849-852.	1.0	37
172	Genetic Analysis of Activation of the <i>Vibrio cholerae</i> Cpx Pathway. Journal of Bacteriology, 2009, 191, 5044-5056.	1.0	36
173	Regulatory Cross-Talk Links Vibrio cholerae Chromosome II Replication and Segregation. PLoS Genetics, 2011, 7, e1002189.	1.5	35
174	A <scp>D</scp> , <scp>D</scp> arboxypeptidase is required for <scp><i>V</i></scp> <i>ibrio cholerae</i> halotolerance. Environmental Microbiology, 2015, 17, 527-540.	1.8	35
175	Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathogens, 2019, 15, e1007652.	2.1	35
176	PprA Contributes to Deinococcus radiodurans Resistance to Nalidixic Acid, Genome Maintenance after DNA Damage and Interacts with Deinococcal Topoisomerases. PLoS ONE, 2014, 9, e85288.	1.1	35
177	Phosphorylation of Deinococcus radiodurans RecA Regulates Its Activity and May Contribute to Radioresistance. Journal of Biological Chemistry, 2016, 291, 16672-16685.	1.6	33
178	A Cytosine Methytransferase Modulates the Cell Envelope Stress Response in the Cholera Pathogen. PLoS Genetics, 2015, 11, e1005666.	1.5	32
179	The Nucleoid Binding Protein H-NS Biases Genome-Wide Transposon Insertion Landscapes. MBio, 2016, 7,	1.8	32
180	Treasure trove for cholera research. Nature, 2000, 406, 469-470.	13.7	31

#	Article	IF	CITATIONS
181	Requirement for Vibrio cholerae Integration Host Factor in Conjugative DNA Transfer. Journal of Bacteriology, 2006, 188, 5704-5711.	1.0	31
182	A National Cholera Vaccine Stockpile — A New Humanitarian and Diplomatic Resource. New England Journal of Medicine, 2010, 363, 2279-2282.	13.9	31
183	Virulence of an emerging pathogenic lineage of <i>Vibrio nigripulchritudo</i> is dependent on two plasmids. Environmental Microbiology, 2011, 13, 296-306.	1.8	31
184	A Genome-Wide Screen Reveals that the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System Modulates Virulence Gene Expression. Infection and Immunity, 2015, 83, 3381-3395.	1.0	31
185	Remodeling of the Intestinal Brush Border Underlies Adhesion and Virulence of an Enteric Pathogen. MBio, 2014, 5, .	1.8	30
186	Growth-Optimized Aminoacyl-tRNA Synthetase Levels Prevent Maximal tRNA Charging. Cell Systems, 2020, 11, 121-130.e6.	2.9	30
187	CadA Negatively Regulates <i>Escherichia coli</i> O157:H7 Adherence and Intestinal Colonization. Infection and Immunity, 2008, 76, 5072-5081.	1.0	29
188	<i>Vibrio cholerae</i> LexA Coordinates CTX Prophage Gene Expression. Journal of Bacteriology, 2009, 191, 6788-6795.	1.0	28
189	A New Suite of Allelic-Exchange Vectors for the Scarless Modification of Proteobacterial Genomes. Applied and Environmental Microbiology, 2019, 85, .	1.4	27
190	Vibrio cholerae Hemagglutinin/Protease Inactivates CTXφ. Infection and Immunity, 1998, 66, 4025-4029.	1.0	27
191	Coupling chemosensory array formation and localization. ELife, 2017, 6, .	2.8	27
192	<scp>RpoS</scp> and quorum sensing control expression and polar localization of <scp><i>V</i></scp> <i>ibrio cholerae</i> chemotaxis cluster <scp>III</scp> proteins <i>in vitro</i> and <i>in vivo</i> . Molecular Microbiology, 2015, 97, 660-675.	1.2	26
193	In Utero Infection Due to Pasteurella multocida in the First Trimester of Pregnancy: Case Report and Review. Clinical Infectious Diseases, 1992, 14, 497-500.	2.9	25
194	Serine/threonine kinase PpkA coordinates the interplay between T6SS2 activation and quorum sensing in the marine pathogen <i>Vibrio alginolyticus</i> . Environmental Microbiology, 2018, 20, 903-919.	1.8	25
195	ATP negatively regulates the initiator protein of <i>Vibrio cholerae</i> chromosome II replication. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10577-10582.	3.3	24
196	Targeting the Replication Initiator of the Second Vibrio Chromosome: Towards Generation of Vibrionaceae-Specific Antimicrobial Agents. PLoS Pathogens, 2009, 5, e1000663.	2.1	24
197	A Vibrio cholerae BolA-Like Protein Is Required for Proper Cell Shape and Cell Envelope Integrity. MBio, 2019, 10, .	1.8	24
198	Pathogen clonal expansion underlies multiorgan dissemination and organ-specific outcomes during murine systemic infection. ELife, 2021, 10, .	2.8	24

#	Article	IF	CITATIONS
199	Disarming Pathogens — A New Approach for Antibiotic Development. New England Journal of Medicine, 2006, 354, 296-297.	13.9	23
200	Autorepression of RctB, an Initiator of Vibrio cholerae Chromosome II Replication. Journal of Bacteriology, 2006, 188, 789-793.	1.0	23
201	Oral immunization with a probiotic cholera vaccine induces broad protective immunity against Vibrio cholerae colonization and disease in mice. PLoS Neglected Tropical Diseases, 2019, 13, e0007417.	1.3	23
202	A Multiorgan Trafficking Circuit Provides Purifying Selection of Listeria monocytogenes Virulence Genes. MBio, 2019, 10, .	1.8	23
203	Mobilizable genomic islands: going mobile with <i>oriT</i> mimicry. Molecular Microbiology, 2010, 78, 537-540.	1.2	22
204	A Bacterial Pathogen Senses Host Mannose to Coordinate Virulence. IScience, 2019, 20, 310-323.	1.9	22
205	Establishing polar identity in gram-negative rods. Current Opinion in Microbiology, 2013, 16, 752-759.	2.3	21
206	A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics. Antimicrobial Agents and Chemotherapy, 2016, 60, 4757-4763.	1.4	21
207	A FACS-Based Genome-wide CRISPR Screen Reveals a Requirement for COPI in Chlamydia trachomatis Invasion. IScience, 2019, 11, 71-84.	1.9	21
208	Mining regulatory 5′UTRs from cDNA deep sequencing datasets. Nucleic Acids Research, 2010, 38, 1504-1514.	6.5	20
209	A Poly- <i>N</i> -Acetylglucosamineâ~'Shiga Toxin Broad-Spectrum Conjugate Vaccine for Shiga Toxin-Producing Escherichia coli. MBio, 2014, 5, e00974-14.	1.8	20
210	Molecular Dissection of the Essential Features of the Origin of Replication of the Second Vibrio cholerae Chromosome. MBio, 2015, 6, e00973.	1.8	20
211	The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Research, 2017, 45, gkw1288.	6.5	20
212	Humans Surviving Cholera Develop Antibodies against Vibrio cholerae O-Specific Polysaccharide That Inhibit Pathogen Motility. MBio, 2020, 11, .	1.8	20
213	LexA Represses CTXΦ Transcription by Blocking Access of the α C-terminal Domain of RNA Polymerase to Promoter DNA. Journal of Biological Chemistry, 2006, 281, 39407-39412.	1.6	18
214	Activation of the Vibrio cholerae SOS Response Is Not Required for Intestinal Cholera Toxin Production or Colonization. Infection and Immunity, 2006, 74, 927-930.	1.0	17
215	The Hydrophilic Translocator for Vibrio parahaemolyticus, T3SS2, Is Also Translocated. Infection and Immunity, 2012, 80, 2940-2947.	1.0	17
216	Probing the diversity and regulation of tRNA modifications. Current Opinion in Microbiology, 2020, 57, 41-48.	2.3	17

#	Article	IF	CITATIONS
217	Crystal Structures of a CTXφ pIII Domain Unbound and in Complex with a Vibrio cholerae TolA Domain Reveal Novel Interaction Interfaces. Journal of Biological Chemistry, 2012, 287, 36258-36272.	1.6	16
218	Refined Quantification of Infection Bottlenecks and Pathogen Dissemination with STAMPR. MSystems, 2021, 6, e0088721.	1.7	16
219	Morphological and physical characterization of the capsular layer of Vibrio cholerae O139. Archives of Microbiology, 1998, 170, 339-344.	1.0	15
220	Embryonic macrophages function during early life to determine invariant natural killer T cell levels at barrier surfaces. Nature Immunology, 2021, 22, 699-710.	7.0	15
221	Comprehensive identification of <i>Vibrio vulnificus</i> genes required for growth in human serum. Virulence, 2018, 9, 981-993.	1.8	14
222	A streptococcal Fic domain-containing protein disrupts blood-brain barrier integrity by activating moesin in endothelial cells. PLoS Pathogens, 2019, 15, e1007737.	2.1	14
223	Infant Rabbit Model for Diarrheal Diseases. Current Protocols in Microbiology, 2015, 38, 6A.6.1-15.	6.5	14
224	Studies of Dynamic Protein-Protein Interactions in Bacteria Using Renilla Luciferase Complementation Are Undermined by Nonspecific Enzyme Inhibition. PLoS ONE, 2012, 7, e43175.	1.1	14
225	Deciphering the Origins and Tracking the Evolution of Cholera Epidemics with Whole-Genome-Based Molecular Epidemiology. MBio, 2013, 4, e00670-13.	1.8	12
226	Unsupervised Learning Approach for Comparing Multiple Transposon Insertion Sequencing Studies. MSphere, 2019, 4, .	1.3	12
227	Testing COVID-19 therapies to prevent progression of mild disease. Lancet Infectious Diseases, The, 2020, 20, 1367.	4.6	12
228	Type I interferon remodels lysosome function and modifies intestinal epithelial defense. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29862-29871.	3.3	12
229	Genetic Dissection of the Fermentative and Respiratory Contributions Supporting Vibrio cholerae Hypoxic Growth. Journal of Bacteriology, 2020, 202, .	1.0	12
230	Nucleolar câ€Myc recruitment by a <i>Vibrio</i> T3SS effector promotes host cell proliferation and bacterial virulence. EMBO Journal, 2021, 40, e105699.	3.5	12
231	Deletion of a Vibrio cholerae CIC Channel Results in Acid Sensitivity and Enhanced Intestinal Colonization. Infection and Immunity, 2003, 71, 4197-4200.	1.0	11
232	Adrenergic Regulation of Bacterial Virulence. Journal of Infectious Diseases, 2007, 195, 1248-1249.	1.9	11
233	Increased Listeria monocytogenes Dissemination and Altered Population Dynamics in Muc2-Deficient Mice. Infection and Immunity, 2021, 89, .	1.0	11
234	Vibrio cholerae. Infectious Agents and Pathogenesis, 1996, , 37-56.	0.1	11

#	Article	IF	CITATIONS
235	Proteomic analysis of the host–pathogen interface in experimental cholera. Nature Chemical Biology, 2021, 17, 1199-1208.	3.9	11
236	Non-O1 Vibrio cholerae unlinked to cholera in Haiti. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3206-E3206.	3.3	10
237	The QseG Lipoprotein Impacts the Virulence of Enterohemorrhagic Escherichia coli and Citrobacter rodentium and Regulates Flagellar Phase Variation in Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2018, 86, .	1.0	10
238	BipA exerts temperature-dependent translational control of biofilm-associated colony morphology in Vibrio cholerae. ELife, 2021, 10, .	2.8	10
239	Animal models for dissecting Vibrio cholerae intestinal pathogenesis and immunity. Current Opinion in Microbiology, 2022, 65, 1-7.	2.3	10
240	Phage Ecology and Bacterial Pathogenesis. , 0, , 66-91.		9
241	A Conserved Streptococcal Virulence Regulator Controls the Expression of a Distinct Class of M-Like Proteins. MBio, 2019, 10, .	1.8	8
242	Shiga toxin remodels the intestinal epithelial transcriptional response to Enterohemorrhagic Escherichia coli. PLoS Pathogens, 2021, 17, e1009290.	2.1	8
243	Lambdoid Phages and Shiga Toxin. , 0, , 129-164.		8
244	Transient Intestinal Colonization by a Live-Attenuated Oral Cholera Vaccine Induces Protective Immune Responses in Streptomycin-Treated Mice. Journal of Bacteriology, 2020, 202, .	1.0	7
245	An Oral Inoculation Infant Rabbit Model for <i>Shigella</i> Infection. MBio, 2020, 11, .	1.8	7
246	Genetic Analysis of the Role of the Conserved Inner Membrane Protein CvpA in Enterohemorrhagic Escherichia coli Resistance to Deoxycholate. Journal of Bacteriology, 2021, 203, .	1.0	7
247	Host-specific differences in the contribution of an ESBL Incl1 plasmid to intestinal colonization by Escherichia coli O104:H4. Journal of Antimicrobial Chemotherapy, 2018, 73, 1579-1585.	1.3	6
248	Dissecting serotype-specific contributions to live oral cholera vaccine efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
249	Identification of a Family of <i>Vibrio</i> Type III Secretion System Effectors That Contain a Conserved Serine/Threonine Kinase Domain. MSphere, 2021, 6, e0059921.	1.3	6
250	In Vivo Transduction with Shiga Toxin 1-Encoding Phage. Infection and Immunity, 1998, 66, 4496-4498.	1.0	6
251	Pneumococcal Phages. , 0, , 335-P1.		5

Bacteriophage Evolution and the Role of Phages in Host Evolution. , 0, , 55-65.

5

#	Article	IF	CITATIONS
253	Emerging Concepts in Cholera Vaccine Design. Annual Review of Microbiology, 2022, 76, 681-702.	2.9	5
254	Horizontal Gene Transfer: Linking Sex and Cell Fate. Current Biology, 2013, 23, R118-R119.	1.8	4
255	Nontoxigenic Vibrio cholerae Challenge Strains for Evaluating Vaccine Efficacy and Inferring Mechanisms of Protection. MBio, 2022, 13, e0053922.	1.8	4
256	A Genome-Scale Antibiotic Screen in Serratia marcescens Identifies YdgH as a Conserved Modifier of Cephalosporin and Detergent Susceptibility. Antimicrobial Agents and Chemotherapy, 2021, 65, e0078621.	1.4	3
257	Staphylococcal Phages. , 0, , 297-318.		3
258	Contribution of Phages to Group A Streptococcus Genetic Diversity and Pathogenesis. , 0, , 319-P4.		3
259	Genomic and Phenotypic Insights for Toxigenic Clinical <i>Vibrio cholerae</i> O141. Emerging Infectious Diseases, 2022, 28, 617-624.	2.0	3
260	Virulence-Linked Bacteriophages of Pathogenic Vibrios. , 0, , 187-205.		1
261	Use of Phages in Therapy and Bacterial Detection. , 0, , 430-440.		1
262	An â€ĩ' for ingenuity. Nature Microbiology, 2019, 4, 1071-1072.	5.9	0
263	<i>Bordetella</i> Phages. , 0, , 206-222.		0
264	Vibrio cholerae. , 2015, , 2471-2479.e2.		0