List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8063862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids. Journal of Chemical & Engineering Data, 2008, 53, 2884-2891.	1.0	486
2	Voltammetric Characterization of the Ferrocene Ferrocenium and Cobaltocenium Cobaltocene Redox Couples in RTILs. Journal of Physical Chemistry C, 2008, 112, 2729-2735.	1.5	228
3	Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Scientific Reports, 2015, 5, 8398.	1.6	152
4	Electrochemistry of Sulfur and Polysulfides in Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 13873-13879.	1.2	147
5	The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chemistry, 2015, 17, 214-218.	4.6	120
6	Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid [C4dmim][N(Tf)2]. Journal of Electroanalytical Chemistry, 2006, 596, 131-140.	1.9	111
7	The use of nano-carbon as an alternative to multi-walled carbon nanotubes in modified electrodes for adsorptive stripping voltammetry. Sensors and Actuators B: Chemical, 2012, 162, 361-368.	4.0	107
8	Electrochemical studies of gold and chloride in ionic liquids. New Journal of Chemistry, 2006, 30, 1576-1583.	1.4	103
9	An Electrochemical Study of the Oxidation of Hydrogen at Platinum Electrodes in Several Room Temperature Ionic Liquidsâ€. Journal of Physical Chemistry B, 2007, 111, 5000-5007.	1.2	102
10	Toward Membrane-Free Amperometric Gas Sensors: A Microelectrode Array Approach. Analytical Chemistry, 2010, 82, 5238-5245.	3.2	102
11	Advanced Wearable Thermocells for Body Heat Harvesting. Advanced Energy Materials, 2020, 10, 2002539.	10.2	97
12	lonic Liquids for Lignin Processing: Dissolution, Isolation, and Conversion. Australian Journal of Chemistry, 2012, 65, 1465.	0.5	91
13	Unusual Voltammetry of the Reduction of O ₂ in [C ₄ dmim][N(Tf) ₂] Reveals a Strong Interaction of O ₂ ^{•â°'} with the [C ₄ dmim] ⁺ Cation. Journal of Physical Chemistry C, 2008, 112, 13709-13715.	1.5	85
14	Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells. Electrochimica Acta, 2017, 225, 482-492.	2.6	83
15	The electrochemical oxidation of hydrogen at activated platinum electrodes in room temperature ionic liquids as solvents. Journal of Electroanalytical Chemistry, 2008, 618, 53-60.	1.9	82
16	The thermoelectrochemistry of the aqueous iron(<scp>ii</scp>)/iron(<scp>iii</scp>) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion. Sustainable Energy and Fuels, 2018, 2, 2717-2726.	2.5	75
17	Electrochemical Oxidation of Nitrite and the Oxidation and Reduction of NO2 in the Room Temperature Ionic Liquid [C2mim][NTf2]. Journal of Physical Chemistry B, 2007, 111, 7778-7785.	1.2	72
18	The mechanism of hydrazine electro-oxidation revealed by platinum microelectrodes: role of residual oxides. Physical Chemistry Chemical Physics, 2011, 13, 5279.	1.3	69

#	Article	IF	CITATIONS
19	Voltammetric Studies of Gold, Protons, and [HCl2]-in Ionic Liquids. Journal of Physical Chemistry C, 2007, 111, 8496-8503.	1.5	63
20	Electrochemical Kinetics of Ag Ag+ and TMPD TMPD+• in the Room-Temperature Ionic Liquid [C4mpyrr][NTf2]; toward Optimizing Reference Electrodes for Voltammetry in RTILs. Journal of Physical Chemistry C, 2007, 111, 13957-13966.	1.5	62
21	Oxygen Reduction Reaction in Room Temperature Protic Ionic Liquids. Journal of Physical Chemistry C, 2013, 117, 18334-18342.	1.5	62
22	One-step synthesis of fluorescein modified nano-carbon for Pd(ii) detection via fluorescence quenching. Analyst, The, 2012, 137, 2054.	1.7	61
23	Facile Synthesis of Pd Nanoparticle Modified Carbon Black for Electroanalysis: Application to the Detection of Hydrazine. Electroanalysis, 2011, 23, 1568-1578.	1.5	59
24	The hydrogen evolution reaction in a room temperature ionic liquid: mechanism and electrocatalyst trends. Physical Chemistry Chemical Physics, 2012, 14, 5222.	1.3	54
25	exposed {1 0 <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mstyle displaystyle="true"><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mo>A^</mml:mo></mml:mover </mml:mstyle></mml:math> 0}	4.0	52
26	facets for butylamine sensing. Sensors and Actuators D. Chemical, 2016, 200, 501-591. Substituted ferrocenes and iodine as synergistic thermoelectrochemical heat harvesting redox couples in ionic liquids. Chemical Communications, 2016, 52, 745-748.	2.2	52
27	Electrooxidation of the lodides [C ₄ mim]I, LiI, NaI, KI, RbI, and CsI in the Room Temperature lonic Liquid [C ₄ mim][NTf ₂]. Journal of Physical Chemistry C, 2008, 112, 6551-6557.	1.5	50
28	Dissolved Argon Changes the Rate of Diffusion in Room Temperature Ionic Liquids: Effect of the Presence and Absence of Argon and Nitrogen on the Voltammetry of Ferrocene. Journal of Physical Chemistry C, 2009, 113, 7750-7754.	1.5	50
29	Electrochemical Ammonia Gas Sensing in Nonaqueous Systems: A Comparison of Propylene Carbonate with Room Temperature Ionic Liquids. Electroanalysis, 2007, 19, 2194-2201.	1.5	48
30	Electroreduction of Sulfur Dioxide in Some Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2008, 112, 3398-3404.	1.5	47
31	Achieving pseudo -â€ ⁻ n-type p-type' in-series and parallel liquid thermoelectrics using all-iron thermoelectrochemical cells with opposite Seebeck coefficients. Electrochemistry Communications, 2016, 72, 181-185.	2.3	47
32	Extraction of Electrode Kinetic Parameters from Microdisc Voltammetric Data Measured under Transport Conditions Intermediate between Steady-State Convergent and Transient Linear Diffusion As Typically Applies to Room Temperature Ionic Liquids. Journal of Physical Chemistry B, 2008, 112, 7560-7565	1.2	46
33	The Electrochemical Reduction of Hydrogen Sulfide on Platinum in Several Room Temperature Ionic Liquids. Journal of Physical Chemistry C, 2008, 112, 7725-7730.	1.5	46
34	A Study of the Na/Na ⁺ Redox Couple in Some Room Temperature Ionic Liquids. Journal of Physical Chemistry C, 2010, 114, 3618-3626.	1.5	46
35	Using XPS to determine solute solubility in room temperature ionic liquids. Analyst, The, 2007, 132, 196.	1.7	45
36	A fundamental study of the thermoelectrochemistry of ferricyanide/ferrocyanide: cation, concentration, ratio, and heterogeneous and homogeneous electrocatalysis effects in thermogalvanic cells. Sustainable Energy and Fuels, 2020, 4, 3388-3399.	2.5	43

#	Article	IF	CITATIONS
37	Electrochemistry of phenol in bis{(trifluoromethyl)sulfonyl}amide ([NTf2]â^') based ionic liquids. Journal of Electroanalytical Chemistry, 2006, 588, 27-31.	1.9	39
38	Mechanistic Studies of the Electro-oxidation Pathway of Ammonia in Several Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2007, 111, 9562-9572.	1.5	39
39	Behavior of the Heterogeneous Electron-Transfer Rate Constants of Arenes and Substituted Anthracenes in Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2008, 112, 1650-1657.	1.5	39
40	Monitoring potassium metal electrodeposition from an ionic liquid using in situ electrochemical-X-ray photoelectron spectroscopy. Chemical Physics Letters, 2011, 509, 72-76.	1.2	39
41	Electrochemical Reduction of Benzoic Acid and Substituted Benzoic Acids in Some Room Temperature Ionic Liquids. Journal of Physical Chemistry C, 2008, 112, 12966-12973.	1.5	38
42	The formal potentials and electrode kinetics of the proton/hydrogen couple in various room temperature ionic liquids. Chemical Communications, 2012, 48, 5572.	2.2	38
43	(Invited) Amperometric Gas Detection Using Room Temperature Ionic Liquid Solvents. ECS Transactions, 2010, 33, 473-502.	0.3	37
44	Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids. Nanotechnology, 2008, 19, 105603.	1.3	36
45	Investigation of the optimal transient times for chronoamperometric analysis of diffusion coefficients and concentrations in non-aqueous solvents and ionic liquids. Analytical Methods, 2012, 4, 371-376.	1.3	36
46	Electrode Kinetics and Mechanism of Iodine Reduction in the Room-Temperature Ionic Liquid [C4mim][NTf2]. Journal of Physical Chemistry C, 2008, 112, 10976-10981.	1.5	35
47	Oxidation of Severalp-Phenylenediamines in Room Temperature Ionic Liquids:  Estimation of Transport and Electrode Kinetic Parameters. Journal of Physical Chemistry C, 2008, 112, 6993-7000.	1.5	32
48	3-Aryl-3-(trifluoromethyl)diazirines as Versatile Photoactivated "Linker―Molecules for the Improved Covalent Modification of Graphitic and Carbon Nanotube Surfaces. Chemistry of Materials, 2011, 23, 3740-3751.	3.2	32
49	The electrochemical reduction of oxygen at boron-doped diamond and glassy carbon electrodes: A comparative study in a room-temperature ionic liquid. Journal of Electroanalytical Chemistry, 2011, 663, 108-112.	1.9	31
50	Using iron sulphate to form both n-type and p-type <i>pseudo</i> -thermoelectrics: non-hazardous and †second life' thermogalvanic cells. Green Chemistry, 2020, 22, 6062-6074.	4.6	30
51	The significance of supporting electrolyte on poly (vinyl alcohol)–iron(II)/iron(III) solid-state electrolytes for wearable thermo-electrochemical cells. Electrochemistry Communications, 2021, 124, 106938.	2.3	30
52	Size-effects in the chemical modification of carbon black nanoparticles with 4-nitroaniline. New Journal of Chemistry, 2010, 34, 2643.	1.4	29
53	In situ electrochemical-X-ray Photoelectron Spectroscopy: Rubidium metal deposition from an ionic liquid in competition with solvent breakdown. Chemical Physics Letters, 2011, 517, 103-107.	1.2	29
54	Success and failure in the incorporation of gold nanoparticles inside ferri/ferrocyanide thermogalvanic cells. Electrochemistry Communications, 2019, 102, 41-45.	2.3	29

LEIGH ALDOUS

#	Article	IF	CITATIONS
55	Electroreduction of Chlorine Gas at Platinum Electrodes in Several Room Temperature Ionic Liquids: Evidence of Strong Adsorption on the Electrode Surface Revealed by Unusual Voltammetry in Which Currents Decrease with Increasing Voltage Scan Rates. Journal of Physical Chemistry C, 2008, 112, 19477-19483.	1.5	28
56	Evaluation of a Microfluidic Device for the Electrochemical Determination of Halide Content in Ionic Liquids. Analytical Chemistry, 2009, 81, 1628-1637.	3.2	27
57	The thermoelectrochemistry of lithium–glyme solvate ionic liquids: towards waste heat harvesting. Physical Chemistry Chemical Physics, 2016, 18, 20768-20777.	1.3	27
58	The electrochemical oxidation of catechol and dopamine on platinum in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) and 1-Butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]): Adsorption effects in ionic liquid voltammetry. Journal of Electroanalytical Chemistry, 2010, 646, 11-17.	1.9	26
59	The electrochemical oxidation and reduction of nitrate ions in the room temperature ionic liquid [C2mim][NTf2]; the latter behaves as a â€̃melt' rather than an â€̃organic solvent'. New Journal of Chemistry, 2007, 31, 966-972.	1.4	25
60	The electrode potentials of the Group I alkali metals in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Chemical Physics Letters, 2010, 492, 276-280.	1.2	24
61	An Electrochemical Study of PCl3and POCl3in the Room Temperature Ionic Liquid [C4mpyrr][N(Tf)2]. Journal of Physical Chemistry B, 2006, 110, 22035-22042.	1.2	23
62	Electrochemical Oxidation of Hydrogen Sulfide at Platinum Electrodes in Room Temperature Ionic Liquids: Evidence for Significant Accumulation of H2S at the Pt/1-Butyl-3-methylimidazolium Trifluoromethylsulfonate Interface. Journal of Physical Chemistry C, 2009, 113, 10997-11002.	1.5	23
63	The voltammetry of surface bound 2-anthraquinonyl groups in room temperature ionic liquids: Cation size effects. Chemical Physics Letters, 2011, 511, 461-465.	1.2	23
64	Extraction and electrochemical detection of capsaicin and ascorbic acid from fresh chilli using ionic liquids. New Journal of Chemistry, 2015, 39, 860-867.	1.4	23
65	Thermogalvanic cells: A side-by-side comparison of measurement methods. Journal of Electroanalytical Chemistry, 2020, 872, 114280.	1.9	23
66	Methylone screening with electropolymerized molecularly imprinted polymer on screen-printed electrodes. Sensors and Actuators B: Chemical, 2020, 316, 128133.	4.0	23
67	Electrochemistry of Hydrogen in the Room Temperature Ionic Liquid 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide: Dissolved Hydrogen "Lubricates―Diffusional Transport. Journal of Physical Chemistry C, 2011, 115, 14334-14340.	1.5	22
68	The electrochemistry of quinizarin revealed through its mediated reduction of oxygen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19891-19895.	3.3	22
69	Novel Chloroimidazoliumâ€Based Ionic Liquids: Synthesis, Characterisation and Behaviour as Solvents to Control Reaction Outcome. ChemPlusChem, 2016, 81, 574-583.	1.3	22
70	Novel porous thermosensitive gel electrolytes for wearable thermo-electrochemical cells. Chemical Engineering Journal, 2022, 449, 137775.	6.6	22
71	Volatilisation of ferrocene from ionic liquids: kinetics and mechanism. Chemical Communications, 2011, 47, 7083.	2.2	21
72	Palladium nanoparticle-modified carbon nanotubes for electrochemical hydrogenolysis in ionic liquids. New Journal of Chemistry, 2011, 35, 1369.	1.4	21

#	Article	IF	CITATIONS
73	Fabrication of PPF Electrodes by a Rapid Thermal Process. Journal of the Electrochemical Society, 2011, 158, H63.	1.3	21
74	Thermogalvanic and Thermocapacitive Behavior of Superabsorbent Hydrogels for Combined Low-Temperature Thermal Energy Conversion and Harvesting. ACS Applied Energy Materials, 2021, 4, 11204-11214.	2.5	21
75	Developing iron-based anionic redox couples for thermogalvanic cells: towards the replacement of the ferricyanide/ferrocyanide redox couple. Green Chemistry, 2021, 23, 8901-8915.	4.6	21
76	Combining thermogalvanic corrosion and thermogalvanic redox couples for improved electrochemical waste heat harvesting. Electrochemistry Communications, 2015, 58, 76-79.	2.3	20
77	Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields. Bioresource Technology, 2015, 197, 252-259.	4.8	20
78	Biophysical analysis of cancer stem cell-potent copper(<scp>ii</scp>) coordination complexes. Dalton Transactions, 2019, 48, 5892-5896.	1.6	19
79	A green approach to Fenton chemistry: mono-hydroxylation of salicylic acid in aqueous medium by the electrogeneration of Fenton's reagent. New Journal of Chemistry, 2012, 36, 1265.	1.4	17
80	Electrochemistry of chloride in ambient room temperature ionic liquids: Formation of oxychloride species. Electrochemistry Communications, 2013, 34, 331-334.	2.3	17
81	Enhancing thermoelectrochemical properties by tethering ferrocene to the anion or cation of ionic liquids: altered thermodynamics and solubility. Physical Chemistry Chemical Physics, 2017, 19, 24255-24263.	1.3	17
82	Thermogalvanic cells demonstrate inherent physiochemical limitations in redox-active electrolytes at water-in-salt concentrations. Cell Reports Physical Science, 2021, 2, 100510.	2.8	17
83	The Kinetics of Ferrocene Volatilisation from an Ionic Liquid. ChemPhysChem, 2011, 12, 1708-1713.	1.0	16
84	Preparation of platinum-based 'cauliflower microarrays' for enhanced ammonia gas sensing. Analytica Chimica Acta, 2019, 1048, 12-21.	2.6	16
85	The Electrochemistry of Vitamin B12 in Ionic Liquids and Its Use in the Electrocatalytic Reduction of Vicinal Dibromoalkanes. Electroanalysis, 2006, 18, 2263-2268.	1.5	15
86	Towards Mixed Fuels: The Electrochemistry of Hydrazine in the Presence of Methanol and Formic Acid. ChemPhysChem, 2011, 12, 1280-1287.	1.0	15
87	Kamlet–Taft solvent parameters, NMR spectroscopic analysis and thermoelectrochemistry of lithium–glyme solvate ionic liquids and their dilute solutions. Physical Chemistry Chemical Physics, 2018, 20, 16558-16567.	1.3	15
88	Aprotic vs Protic Ionic Liquids for Lignocellulosic Biomass Pretreatment: Anion Effects, Enzymatic Hydrolysis, Solid-State NMR, Distillation, and Recycle. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	15
89	Gold nanoparticles immobilised in a superabsorbent hydrogel matrix: facile synthesis and application for the catalytic reduction of toxic compounds. Chemical Communications, 2020, 56, 1263-1266.	2.2	15
90	Cleavage of ethers in an ionic liquid. Enhancement, selectivity and potential application. Organic and Biomolecular Chemistry, 2017, 15, 5556-5563.	1.5	14

#	Article	IF	CITATIONS
91	Electroanalytical Detection of <i>n</i> â€Butylamine at a Nickel/Carbon Nanotube Composite. Electroanalysis, 2010, 22, 912-917.	1.5	13
92	Synthesis and characterization of carbon nanotubes covalently functionalized with amphiphilic polymer coated superparamagnetic nanocrystals. Journal of Colloid and Interface Science, 2012, 383, 110-117.	5.0	13
93	Pretreatment of Macadamia Nut Shells with Ionic Liquids Facilitates Both Mechanical Cracking and Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2015, 3, 992-999.	3.2	13
94	Electrochemistry: general discussion. Faraday Discussions, 2018, 206, 405-426.	1.6	13
95	Irreversible uptake of palladium from aqueous systems using l-cysteine methyl ester physisorbed on carbon black. Journal of Materials Chemistry, 2011, 21, 9513.	6.7	12
96	Temperature effect upon the thermoelectrochemical potential generated between lithium metal and lithium ion intercalation electrodes in symmetric and asymmetric battery arrangements. Electrochemistry Communications, 2018, 86, 153-156.	2.3	12
97	Electroanalytical profiling of cocaine samples by means of an electropolymerized molecularly imprinted polymer using benzocaine as the template molecule. Analyst, The, 2021, 146, 1747-1759.	1.7	12
98	Measuring the solubility of benzoic acid in room temperature ionic liquids using chronoamperometric techniques. Journal of Physical Organic Chemistry, 2009, 22, 69-76.	0.9	11
99	Clean, efficient electrolysis of formic acid via formation of eutectic, ionic mixtures with ammonium formate. Energy and Environmental Science, 2010, 3, 1587.	15.6	11
100	Hydrogenolysis without hydrogen gas: hydrogen loaded palladium electrodes by electrolysis of H[NTf2] in a room temperature ionic liquid. Green Chemistry, 2010, 12, 1926.	4.6	11
101	The adsorption of quinizarin on boron-doped diamond. Physical Chemistry Chemical Physics, 2012, 14, 2375.	1.3	11
102	Total quantification and extraction of shikimic acid from star anise (llicium verum) using solid-state NMR and cellulose-dissolving aqueous hydroxide solutions. Sustainable Chemistry and Pharmacy, 2017, 5, 115-121.	1.6	11
103	Direct measurement of the genuine efficiency of thermogalvanic heat-to-electricity conversion in thermocells. Chemical Science, 2022, 13, 4984-4998.	3.7	11
104	Towards the electrochemical quantification of the strength of garlic. Analyst, The, 2011, 136, 128-133.	1.7	10
105	Carbon dioxide as a pH-switch anti-solvent for biomass fractionation and pre-treatment with aqueous hydroxide solutions. Green Chemistry, 2017, 19, 2129-2134.	4.6	10
106	A Cation Study on Rice Husk Biomass Pretreatment with Aqueous Hydroxides: Cellulose Solubility Does Not Correlate with Improved Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 5320-5329.	3.2	9
107	Thermal conductivity measurement of liquids in a microfluidic device. Microfluidics and Nanofluidics, 2011, 10, 123-132.	1.0	8
108	Phase behaviour and thermodynamics: general discussion. Faraday Discussions, 2017, 206, 113-139.	1.6	8

#	Article	IF	CITATIONS
109	Volatilisation of substituted ferrocene compounds of different sizes from room temperature ionic liquids: a kinetic and mechanistic study. New Journal of Chemistry, 2012, 36, 774.	1.4	7
110	The Group I Alkali Metals in Ionic Liquids: Electrodeposition and Determination of Their Kinetic and Thermodynamic Properties. ECS Transactions, 2010, 33, 523-535.	0.3	6
111	Polyoxometalates as solution-phase electrocatalytic mediators for reduced electrode fouling and the improved oxidative response of phenols. Electrochemistry Communications, 2016, 69, 32-35.	2.3	6
112	Repurposing commercial anaerobic digester wastewater to improve cyanobacteria cultivation and digestibility for bioenergy systems. Sustainable Energy and Fuels, 2019, 3, 841-849.	2.5	6
113	Highlights from the Faraday Discussion on Ionic Liquids: From Fundamental Properties to Practical Applications, Cambridge, UK, September 2017. Chemical Communications, 2018, 54, 5261-5267.	2.2	4
114	Nanostructuring Electrode Surfaces and Hydrogels for Enhanced Thermocapacitance. ACS Applied Nano Materials, 2022, 5, 438-445.	2.4	4
115	Electrochemistry of Zirconium Tetrachloride in the Ionic Liquid <i>N</i> â€Butylâ€ <i>N</i> â€methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide: Formation of Zr(III) and Exploitation of ZrCl ₄ as a Facile Ionic Liquid Drying Agent. Electroanalysis, 2012, 24, 210-213.	1.5	3
116	The Corannulene Reduction Mechanism in Ionic Liquids is Controlled by Ion Pairing. Journal of Physical Chemistry C, 2016, 120, 8405-8410.	1.5	3
117	Electrochemistry of Hg(II) Salts in Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 2574-2581.	1.2	2
118	The Oxygen Reduction Reaction in Ferrofluids: Towards Membraneâ€less and Spillâ€less Gas Sensors. ChemPlusChem, 2014, 79, 1498-1506.	1.3	2
119	Recent advances in ionic liquid-based gas sensors. , 2016, , 287-338.		2
120	Feedstocks and analysis: general discussion. Faraday Discussions, 2017, 202, 497-519.	1.6	2
121	Nucleophilic Cleavage of Lignin Model Compounds under Acidic Conditions in an Ionic Liquid: A Mechanistic Study. ChemPlusChem, 2018, 83, 348-353.	1.3	2
122	Electrochemical Detection Using Ionic Liquids. RSC Detection Science, 2015, , 341-386.	0.0	2
123	CHAPTER 8. Electrocatalysis in Ionic Liquids. RSC Catalysis Series, 0, , 433-473.	0.1	2
124	Amperometric Gas Detection Using RTIL Solvents. ECS Meeting Abstracts, 2010, , .	0.0	0
125	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	1.6	0
126	Mediated and Direct Electrocatalytic Oxidation of Glucose and Cellulose: Towards Glucose and Cellulosic Air Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0