Subhash C. Lakhotia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8063488/publications.pdf

Version: 2024-02-01

172457 206112 3,023 131 29 48 citations g-index h-index papers 150 150 150 2397 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heat shock genes — integrating cell survival and death. Journal of Biosciences, 2007, 32, 595-610.	1.1	416
2	Omega speckles – a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr <i>-</i> omega RNA in <i>Drosophila</i>). Journal of Cell Science, 2000, 113, 3375-3386.	2.0	142
3	Human sat III and Drosophila hsrï‰ transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Research, 2006, 34, 5508-5514.	14.5	127
4	Specific activation of puff 93 D of Drosophila melanogaster by benzamide and the effect of benzamide treatment on the heat shock induced puffing activity. Chromosoma, 1980, 81, 125-136.	2.2	85
5	Long nonâ€coding RNAs coordinate cellular responses to stress. Wiley Interdisciplinary Reviews RNA, 2012, 3, 779-796.	6.4	80
6	The large noncoding hsrï‰-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma, 2012, 121, 49-70.	2.2	78
7	In Vivo Effects Of Traditional Ayurvedic Formulations in Drosophila melanogaster Model Relate with Therapeutic Applications. PLoS ONE, 2012, 7, e37113.	2.5	63
8	Chromosomal basis of dosage compensation in <i>Drosophila</i> : I. Cellular autonomy of hyperactivity of the male <i>X</i> -chromosome in salivary glands and sex differentiation. Genetical Research, 1969, 14, 137-150.	0.9	60
9	CHROMOSOMAL BASIS OF DOSAGE COMPENSATION IN DROSOPHILA. Journal of Cell Biology, 1970, 47, 18-33.	5.2	59
10	Multiple inducers of the Drosophila heat shock locus 93D (hsr omega): inducer-specific patterns of the three transcripts Journal of Cell Biology, 1989, 108, 2017-2028.	5.2	58
11	EM autoradiographic studies on polytene nuclei of Drosophila melanogaster. Experimental Cell Research, 1974, 86, 253-263.	2.6	57
12	Decreased O-Linked GlcNAcylation Protects from Cytotoxicity Mediated by Huntingtin Exon1 Protein Fragment. Journal of Biological Chemistry, 2014, 289, 13543-13553.	3.4	54
13	RNAi for the large non-coding hsrï‰ transcripts suppresses polyglutamine pathogenesis in <i>Drosophila</i> models. RNA Biology, 2009, 6, 464-478.	3.1	47
14	Forty years of the 93D puff of Drosophila melanogaster. Journal of Biosciences, 2011, 36, 399-423.	1.1	46
15	The ISWI Chromatin Remodeler Organizes the hsrï‰ ncRNA–Containing Omega Speckle Nuclear Compartments. PLoS Genetics, 2011, 7, e1002096.	3.5	46
16	Tissue- and development-specific induction and turnover of hsp70 transcripts from loci 87A and 87C after heat shock and during recovery in Drosophila melanogaster. Journal of Experimental Biology, 2002, 205, 345-58.	1.7	46
17	Expression of mdr49 and mdr65 multidrug resistance genes in larval tissues of Drosophila melanogaster under normal and stress conditions. Cell Stress and Chaperones, 2005, 10, 7.	2.9	40
18	Dynamics of hnRNPs and omega speckles in normal and heat shocked live cell nuclei of Drosophila melanogaster. Chromosoma, 2015, 124, 367-383.	2.2	39

#	Article	IF	CITATIONS
19	Conservation of the 93D puff of Drosophila melanogaster in different species of Drosophila. Chromosoma, 1982, 86, 265-278.	2.2	38
20	Tissue-specific variations in the induction of Hsp70 and Hsp64 by heat shock in insects. Cell Stress and Chaperones, 2000, 5, 90.	2.9	38
21	The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers in Drosophila melanogaster are expressed in tissues other than eyes also. Journal of Genetics, 2015, 94, 407-416.	0.7	38
22	Absence of novel translation products in relation to induced activity of the 93D puff in Drosophila melanogaster. Chromosoma, 1982, 85, 369-374.	2.2	37
23	Altered Expression of the Noncoding <i>hsr&omega;</i> Gene Enhances poly-Q Induced Neurotoxicity in <i>Drosophila</i> .RNA Biology, 2006, 3, 28-35.	3.1	37
24	EM autoradiographic studies on polytene nuclei of Drosophila melanogaster. Chromosoma, 1974, 46, 145-159.	2.2	36
25	3H-uridine incorporation in the puff 93D and in chromocentric heterochromatin of heat shocked salivary glands of Drosophila melanogaster. Chromosoma, 1979, 74, 75-82.	2.2	34
26	The Developmentally Active and Stress-Inducible Noncoding <i>hsr</i> i>i% Gene Is a Novel Regulator of Apoptosis in Drosophila. Genetics, 2009, 183, 831-852.	2.9	34
27	TheHsp60C gene in the 25F cytogenetic region inDrosophila melanogaster is essential for tracheal development and fertility. Journal of Genetics, 2005, 84, 265-281.	0.7	33
28	Energetics of Excitatory and Inhibitory Neurotransmission in Aluminum Chloride Model of Alzheimer's Disease: Reversal of Behavioral and Metabolic Deficits by Rasa Sindoor. Frontiers in Molecular Neuroscience, 2017, 10, 323.	2.9	33
29	Spatial expression of thehsr-omega (93D) gene in different tissues ofdrosophila melanogaster and identification of promoter elements controlling its developmental expression. Genesis, 1995, 17, 303-311.	2.1	32
30	The 93D (hsr-omega) locus of Drosophila: non-coding gene with house-keeping functions. Genetica, 1996, 97, 339-348.	1.1	31
31	Improved Activities of CREB Binding Protein, Heterogeneous Nuclear Ribonucleoproteins and Proteasome Following Downregulation of Noncoding hsrï‰ Transcripts Help Suppress Poly(Q) Pathogenesis in Fly Models. Genetics, 2010, 184, 927-945.	2.9	31
32	The 93D heat shock locus InDrosophila: A review. Journal of Genetics, 1987, 66, 139-157.	0.7	30
33	RNA metabolismin situ at the 93D heat shock locus in polytene nuclei ofDrosophila melanogaster after various treatments. Chromosome Research, 1995, 3, 151-161.	2.2	29
34	Genetic mapping of the amide response element(s) of the hsr ω locus of Drosophila melanogaster. Chromosoma, 1998, 107, 127-135.	2.2	29
35	Azadiradione ameliorates polyglutamine expansion disease in <i>Drosophila</i> by potentiating DNA binding activity of heat shock factor 1. Oncotarget, 2016, 7, 78281-78296.	1.8	28
36	A Critical Analysis of the â€~UGC-Approved List of Journals'. Current Science, 2018, 114, 1299.	0.8	28

#	Article	IF	CITATIONS
37	The 93D heat shock locus of <i>Drosophila melanogaster</i> developmental factors. Genome, 1989, 31, 677-683.	2.0	27
38	Replication in Drosophila chromosomes. Chromosoma, 1983, 88, 265-276.	2.2	26
39	Specific induction of the hsr omega locus of Drosophila melanogaster by amides. Chromosome Research, 1997, 5, 359-362.	2.2	26
40	Developmental regulation and complex organization of the promoter of the non-codinghsri‰ gene of Drosophila melanogaster. Journal of Biosciences, 2001, 26, 25-38.	1.1	26
41	Male sterility associated with overexpression of the noncodinghsrΩ gene in cyst cells of testis ofDrosophila melanogaster. Journal of Genetics, 2001, 80, 97-110.	0.7	25
42	A novel set of heat shock polypeptides in malpighian tubules of Drosophila melanogaster. Journal of Genetics, 1989, 68, 129-137.	0.7	24
43	Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. Journal of Genetics, 2010, 89, 497-526.	0.7	24
44	Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsrï‰ gene in Drosophila. Journal of Biosciences, 2011, 36, 265-280.	1.1	24
45	Dysregulation of core components of SCF complex in poly-glutamine disorders. Cell Death and Disease, 2012, 3, e428-e428.	6.3	24
46	Chromosomal basis of dosage compensation in Drosophila: II. The DNA replication patterns of the male X-chromosome in an autosome—X insertion in D. melanogaster. Genetical Research, 1970, 15, 301-307.	0.9	23
47	The hnRNP A1 homolog Hrp36 is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster. Journal of Biosciences, 2012, 37, 659-678.	1.1	22
48	Chromosomal organization of Drosophila tumours. Chromosoma, 1987, 95, 108-116.	2.2	21
49	Regulation of heat shock proteins, Hsp70 and Hsp64, in heat-shocked Malpighian tubules of Drosophila melanogaster larvae. Cell Stress and Chaperones, 2002, 7, 347.	2.9	20
50	Replication in Drosophila chromosomes. Chromosoma, 1984, 89, 63-67.	2.2	19
51	Non-inducibility of the 93D heat-shock puff in cold-reared larvae of Drosophila melanogaster. Chromosoma, 1985, 92, 48-54.	2.2	18
52	Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress and Chaperones, 2008, 13, 509-526.	2.9	18
53	Divergent actions of long noncoding RNAs on X-chromosome remodelling in mammals and Drosophila achieve the same end result: dosage compensation. Journal of Genetics, 2015, 94, 575-584.	0.7	18
54	In situ quantification of hsp70 and alpha-beta transcripts at 87A and 87C loci in relation tohsr-omega gene activity in polytene cells ofDrosophila melanogaster. Chromosome Research, 1995, 3, 386-393.	2.2	17

#	Article	IF	CITATIONS
55	Synthesis of a ubiquitously present new HSP60 family protein is enhanced by heat shock only in the Malpighian tubules ofDrosophila. Experientia, 1996, 52, 751-756.	1.2	17
56	<i>Hsp60C</i> is required in follicle as well as germline cells during oogenesis in <i>Drosophila melanogaster</i> . Developmental Dynamics, 2008, 237, 1334-1347.	1.8	17
57	Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster. Journal of Biosciences, 2016, 41, 697-711.	1.1	16
58	Effects of Hoechst 33258 on condensation patterns of hetero- and euchromatin in mitotic and interphase nuclei of Drosophila nasuta. Experimental Cell Research, 1981, 132, 423-431.	2.6	14
59	Different effects of 93D on 87C heat shock puff activity in Drosophila melanogaster and D. simulans. Chromosoma, 1986, 94, 279-284.	2.2	14
60	neurodegeneration disorders need holistic care and treatment $\hat{a} \in \text{``can ayurveda meet the challenge?'}$. Annals of Neurosciences, 2013, 20, 1-2.	1.7	14
61	Over-expression of Hsp83 in grossly depleted hsrï‰ lncRNA background causes synthetic lethality and l(2)gl phenocopy in Drosophila. Journal of Biosciences, 2019, 44, 1.	1.1	14
62	Studies on Rodent Chromosomes. Cytologia, 1973, 38, 403-410.	0.6	13
63	Replication in Drosophila chromosomes. Chromosoma, 1982, 85, 221-236.	2.2	13
64	Suppression of induced but not developmental apoptosis in Drosophila by Ayurvedic Amalaki Rasayana and Rasa-Sindoor. Journal of Biosciences, 2015, 40, 281-297.	1.1	13
65	Activated Ras/JNK driven Dilp8 in imaginal discs adversely affects organismal homeostasis during early pupal stage in <i>Drosophila</i> , a new checkpoint for development. Developmental Dynamics, 2019, 248, 1211-1231.	1.8	13
66	Replication in Drosophila chromosomes. I. Replication of intranucleolar DNA in polytene cells of D. nasuta. Journal of Cell Science, 1979, 36, 185-197.	2.0	13
67	A study of heterochromatin in Drosophila nasuta by the 5-bromodeoxyuridine-giemsa staining technique. Chromosoma, 1979, 72, 249-255.	2.2	12
68	hsp 83 mutation is a dominant enhancer of lethality associated with absence of the non-protein codinghsri‰ locus inDrosophila melanogaster. Journal of Biosciences, 1996, 21, 207-219.	1.1	12
69	From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. Advances in Experimental Medicine and Biology, 2017, 1008, 75-118.	1.6	12
70	Non-coding RNAs: ever-expanding diversity of types and functions. , 2020, , 5-57.		12
71	Mutations affecting \hat{l}^2 -alanine metabolism influence inducibility of the 93D puff by heat shock in Drosophila melanogaster. Chromosoma, 1990, 99, 296-305.	2.2	11
72	The hnRNP A1 homolog Hrb87F/Hrp36 is important for telomere maintenance in Drosophila melanogaster. Chromosoma, 2016, 125, 373-388.	2.2	11

#	Article	IF	CITATIONS
73	1 (2)gl gene regulates late expression of segment polarity genes in Drosophila. Mechanisms of Development, 1995, 51, 227-234.	1.7	10
74	Non-Coding RNAs Have Key Roles in Cell Regulation. Proceedings of the Indian National Science Academy, 0, 82, .	1.4	10
75	Fluorescence patterns of heterochromatin in mitotic and polytene chromosomes in seven members of three sub-groups of the melanogaster species group of Drosophila. Chromosoma, 1980, 81, 137-150.	2.2	9
76	Dosage compensation of X-chromosome activity in interspecific hybrids of Drosophila melanogaster and D. simulans. Chromosoma, 1981, 82, 229-236.	2.2	9
77	Expression of 93D heat shock puff of Drosophila melanogaster in deficiency genotypes and its influence on activity of the 87C puff. Chromosoma, 1986, 94, 273-278.	2.2	9
78	Heat shock response in ovarian nurse cells of Anopheles stephensi. Journal of Biosciences, 1989, 14, 143-152.	1.1	9
79	Heat shock but not benzamide and colchicine response elements are present within the — 844 bp upstream region of thehrsï‰ gene ofDrosophila melanogaster. Journal of Biosciences, 1996, 21, 235-246.	1.1	9
80	Amalaki Rasayana improved memory and neuronal metabolic activity in AβPP-PS1 mouse model of Alzheimer's disease. Journal of Biosciences, 2017, 42, 363-371.	1.1	9
81	localisation of non-replicating heterochromatin in polytene cells of Drosophila nasuta by fluorescence microscopy. Chromosoma, 1977, 59, 301-305.	2.2	8
82	Replication in Drosophila chromosomes. Chromosoma, 1984, 89, 212-217.	2.2	8
83	Gelatin as a blocking agent in Southern blot and chromosomal in situ hybridizations. Trends in Genetics, 1993, 9, 261-262.	6.7	8
84	Non-coding RNAs demystify constitutive heterochromatin as essential modulator of epigenotype. Nucleus (India), 2017, 60, 299-314.	2.2	8
85	Altered levels of hsromega IncRNAs further enhance Ras signaling during ectopically activated Ras induced R7 differentiation in Drosophila. Gene Expression Patterns, 2019, 33, 20-36.	0.8	8
86	Replication in Drosophila chromosomes. IX. Stimulation of initiation of polytene replication cycles in vitro by juvenile hormone. Cell Differentiation, 1983, 12, 11-17.	0.4	7
87	Effect of low-temperature rearing on heat shock protein synthesis and heat sensitivity inDrosophila melanogaster. Genesis, 1988, 9, 193-201.	2.1	7
88	Interaction of the non-protein-coding developmental and stress-induciblehsrï‰ gene withRas genes ofDrosophila melanogaster. Journal of Biosciences, 1998, 23, 377-386.	1.1	7
89	<i>DNApol</i> â€iµ gene is indispensable for the survival and growth of <i>Drosophila melanogaster</i> Genesis, 2012, 50, 86-101.	1.6	7
90	The hsrï‰ 05241 allele of the noncoding hsrï‰ gene of Drosophila melanogaster is not responsible for male sterility as reported earlier. Journal of Genetics, 2008, 87, 87-90.	0.7	6

#	Article	IF	Citations
91	Expression of hsrï‰-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster. Cell Stress and Chaperones, 2016, 21, 105-120.	2.9	6
92	Replication in Drosophila chromosomes XIII. Comparison of late replicating sites in two polytene cell types in D. hydei. Genetica, 1984, 65, 227-234.	1.1	5
93	In situ patterns of nuclear replication in brain ganglia ofl(2) gl 4 mutant larvae ofDrosophila melanogaster. Journal of Genetics, 1991, 70, 161-168.	0.7	5
94	A Policy Statement on "Dissemination and Evaluation of Research Output in India" by the Indian National Science Academy (New Delhi). Proceedings of the Indian National Science Academy, 2018, 97, .	1.4	5
95	Chromosomes of Rattus blanfordi. Journal of Heredity, 1972, 63, 44-47.	2.4	4
96	Regulation of HSP70 in excitatory neurons: Possible implications for neuronal functioning. Journal of Biosciences, 1996, 21, 631-639.	1.1	4
97	Influenza like illness related clinical trial on AYUSH-64 requires cautious interpretation. Journal of Ayurveda and Integrative Medicine, 2020, , 100346-100346.	1.7	4
98	Conservation of gene architecture and domains amidst sequence divergence in the hsrï‰ lncRNA gene across the Drosophila genus: an in silico analysis. Journal of Genetics, 2020, 99, 1.	0.7	4
99	excellence in medical research " $\rlap/\imath_2 \rlap/\imath_2$ can we make it in india?. Annals of Neurosciences, 2015, 22, 55-7.	1.7	4
100	Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Research, 2007, 35, 2812-2812.	14.5	3
101	Ayurvedic Rasayana Therapy: A Rational Understanding Necessary for Mass Benefits. , 2019, , 77-99.		3
102	Validation of Ayurvedic formulations in animal models requires stringent scientific rigor. Journal of Ayurveda and Integrative Medicine, 2010, 1, 171.	1.7	3
103	Ayurvedic Biology - An Unbiased Approach to Understand Traditional Health-Care System. Proceedings of the Indian National Science Academy, 2016, 82, .	1.4	3
104	Elevation of major constitutive heat shock proteins is heat shock factor independent and essential for establishment and growth of Lgl loss and Yorkie gain-mediated tumors in Drosophila. Cell Stress and Chaperones, 2022, 27, 431-448.	2.9	3
105	Replication in drosophila chromosomes III. Disproportionate replication of hetero- and eu-chromatin in wing imaginal disk cells of D. nasuta larvae. Genetica, 1981, 54, 247-250.	1.1	2
106	Restriction enzyme digestion of heterochromatin in Drosophila nasuta. Journal of Biosciences, 1991, 16, 187-197.	1.1	2
107	The hyperactive X chromosome is not early replicating in mitotically active somatic cells of Drosophila nasuta males. Genome, 1995, 38, 148-152.	2.0	2
108	Epigenetics of heterochromatin. Journal of Biosciences, 2004, 29, 219-224.	1.1	2

#	Article	IF	CITATIONS
109	Nature of methods in science: technology driven science <i>versus</i> science driven technology. BioEssays, 2009, 31, 1370-1371.	2.5	2
110	Hsp60D-A novel modifier of polyglutamine-mediated neurodegeneration in Drosophila. Annals of Neurosciences, 2010, 17, 8-17.	1.7	2
111	Mis-Conceived and Mis-Implemented Academic Assessment Rules Underlie the Scourge of Predatory Journals and Conferences. Proceedings of the Indian National Science Academy, 2017, 94, .	1.4	2
112	Cell cycle and DNA content of mitotic cells in brain ganglia ofdrosophila larvae. Journal of Biosciences, 1995, 20, 175-195.	1.1	1
113	Research, Communication and Impact. Proceedings of the Indian National Science Academy, 2014, 80, .	1.4	1
114	Societal Responsibilities and Research Publications. Proceedings of the Indian National Science Academy, 2014, 80, 913.	1.4	1
115	Book Review- Integrative Approaches for Health: Biomedical Research, Ayurveda and Yoga. Proceedings of the Indian National Science Academy, 2015, 81, .	1.4	1
116	The Fraud of Open Access Publishing. Proceedings of the Indian National Science Academy, 2017, 90, .	1.4	1
117	Research Fund Crunch, Real or Created, Is Hitting India's Academia on The Wrong Side. Proceedings of the Indian National Science Academy, 2018, 98, .	1.4	1
118	Over-expression of Hsp83 in grossly depleted lncRNA background causes synthetic lethality and phenocopy in. Journal of Biosciences, 2019, 44, .	1.1	1
119	Conservation of gene architecture and domains amidst sequence divergence in the lncRNA gene across the genus: an analysis. Journal of Genetics, 2020, 99, .	0.7	1
120	In situ study of chorion gene amplification in ovarian follicle cells of Drosophila nasuta. Journal of Biosciences, 1990, 15, 99-105.	1.1	0
121	Stress biology â€" from molecules to populations and environment. Journal of Biosciences, 2004, 29, 447-448.	1.1	0
122	Hsp60Cis required in follicle as well as germline cells during oogenesis inDrosophila melanogaster. Developmental Dynamics, 2008, 237, spc1-spc1.	1.8	0
123	Perils of "industrial gene―and "beanbag genetics― BioEssays, 2008, 30, 288-288.	2.5	0
124	Dosage compensation in Drosophila in the 1960s: a personal historical perspective. Journal of Genetics, 2021, 100, 1.	0.7	0
125	What Sustains?. Proceedings of the Indian National Science Academy, 2014, 80, 179.	1.4	0
126	Why we Publish, Where we publish and What we Publish?. Proceedings of the Indian National Science Academy, 2014, 80, 511.	1.4	0

#	Article	IF	CITATIONS
127	Editorial: Science Research in India at Cross-roads. Proceedings of the Indian National Science Academy, 2015, 81, .	1.4	O
128	Exploring Traditional Medicine - attempt to validate layman's experience-based health care systems across the world. Proceedings of the Indian National Science Academy, 2015, 81, .	1.4	0
129	New Emphasis on Privately Funded Applied Research: Would it Make India Industrially Sound and a Knowledge Economy?. Proceedings of the Indian National Science Academy, 2015, 81, .	1.4	O
130	New Education Policy and Science & Technology Vision 2032 - Catchy Slogans to Action. Proceedings of the Indian National Science Academy, 2016, 82, .	1.4	0
131	Dosage compensation in in the 1960s: a personal historical perspective. Journal of Genetics, 2021, 100, .	0.7	0