Mo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8062983/publications.pdf Version: 2024-02-01

85541 66343 5,449 99 42 71 citations h-index g-index papers 99 99 99 1059 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Memristor-Based Hyperchaotic Maps and Application in Auxiliary Classifier Generative Adversarial Nets. IEEE Transactions on Industrial Informatics, 2022, 18, 5297-5306.	11.3	68
2	Piecewise-Linear Simplification for Adaptive Synaptic Neuron Model. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1832-1836.	3.0	16
3	DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator. Chaos, Solitons and Fractals, 2022, 154, 111624.	5.1	27
4	Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model. Cognitive Neurodynamics, 2022, 16, 1221-1231.	4.0	57
5	Extreme Multistability and Its Incremental Integral Reconstruction in a Non-Autonomous Memcapacitive Oscillator. Mathematics, 2022, 10, 754.	2.2	7
6	Electromagnetic radiation induced non-chaotic behaviors in a Wilson neuron model. Chinese Journal of Physics, 2022, 77, 214-222.	3.9	14
7	Analog/Digital Multiplierless Implementations for Nullcline-Characteristics-Based Piecewise Linear Hindmarsh-Rose Neuron Model. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 2916-2927.	5.4	26
8	DC-offset-induced hidden and asymmetric dynamics in Memristive Chua's circuit. Chaos, Solitons and Fractals, 2022, 160, 112192.	5.1	14
9	Initials-Boosted Coexisting Chaos in a 2-D Sine Map and Its Hardware Implementation. IEEE Transactions on Industrial Informatics, 2021, 17, 1132-1140.	11.3	108
10	FPGA-based experiments for demonstrating bi-stability in tabu learning neuron model. Circuit World, 2021, 47, 194-205.	0.9	6
11	2-D Piecewise-Linear Neuron Model. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1453-1457.	3.0	10
12	Two-Dimensional Memristive Hyperchaotic Maps and Application in Secure Communication. IEEE Transactions on Industrial Electronics, 2021, 68, 9931-9940.	7.9	139
13	Asymmetric coexisting bifurcations and multi-stability in an asymmetric memristive diode-bridge-based Jerk circuit. Chinese Journal of Physics, 2021, 70, 69-81.	3.9	51
14	Multi-stable patterns coexisting in memristor synapse-coupled Hopfield neural network. , 2021, , 439-459.		2
15	Memristive neuron model with an adapting synapse and its hardware experiments. Science China Technological Sciences, 2021, 64, 1107-1117.	4.0	55
16	No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions. Chaos, Solitons and Fractals, 2021, 144, 110744.	5.1	20
17	Parameter and initial offset boosting dynamics in two-memristor-based Colpitts system. European Physical Journal: Special Topics, 2021, 230, 1709-1721.	2.6	13
18	A unified asymmetric memristive diode-bridge emulator and hardware confirmation. European Physical Journal: Special Topics, 2021, 230, 1805-1811.	2.6	4

#	Article	IF	CITATIONS
19	Analogy circuit synthesis and dynamics confirmation of a bipolar pulse current-forced 2D Wilson neuron model. European Physical Journal: Special Topics, 2021, 230, 1989-1997.	2.6	7
20	Coexisting Infinitely Many Nonchaotic Attractors in a Memristive Weight-Based Tabu Learning Neuron. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150189.	1.7	13
21	Discrete Memristor Hyperchaotic Maps. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4534-4544.	5.4	105
22	A non-autonomous conservative system and its reconstitution in integral domain. Nonlinear Dynamics, 2021, 103, 643-655.	5.2	18
23	Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 1517-1531.	2.6	15
24	Flux–Charge Analysis of Two-Memristor-Based Chua's Circuit: Dimensionality Decreasing Model for Detecting Extreme Multistability. IEEE Transactions on Industrial Electronics, 2020, 67, 2197-2206.	7.9	163
25	Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris–Lecar bi-neuron network. Nonlinear Dynamics, 2020, 99, 2339-2354.	5.2	76
26	Interpreting initial offset boosting via reconstitution in integral domain. Chaos, Solitons and Fractals, 2020, 131, 109544.	5.1	37
27	Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Science China Technological Sciences, 2020, 63, 603-613.	4.0	94
28	Extreme Multistability in Simple Area-Preserving Map. IEEE Access, 2020, 8, 175972-175980.	4.2	18
29	Symmetrically scaled coexisting behaviors in two types of simple jerk circuits. Circuit World, 2020, 47, 61-70.	0.9	2
30	Reconstitution for interpreting hidden dynamics with stable equilibrium point. Chaos, Solitons and Fractals, 2020, 140, 110188.	5.1	16
31	Hyperchaos in a secondâ€order discrete memristorâ€based map model. Electronics Letters, 2020, 56, 769-770.	1.0	68
32	Synchronous Behavior for Memristive Synapse-Connected Chay Twin-Neuron Network and Hardware Implementation. Mathematical Problems in Engineering, 2020, 2020, 1-12.	1.1	3
33	Parallel-Type Asymmetric Memristive Diode-Bridge Emulator and Its Induced Asymmetric Attractor. IEEE Access, 2020, 8, 156299-156307.	4.2	10
34	Riddled Attraction Basin and Multistability in Three-Element-Based Memristive Circuit. Complexity, 2020, 2020, 1-13.	1.6	4
35	Coexisting Infinite Orbits in an Area-Preserving Lozi Map. Entropy, 2020, 22, 1119.	2.2	18
36	Forward and reverse asymmetric memristor-based jerk circuits. AEU - International Journal of Electronics and Communications, 2020, 123, 153294.	2.9	25

Mo Chen

#	Article	IF	CITATIONS
37	Initial-switched boosting bifurcations in 2D hyperchaotic map. Chaos, 2020, 30, 033107.	2.5	37
38	Chaotic flows with special equilibria. European Physical Journal: Special Topics, 2020, 229, 905-919.	2.6	33
39	Memristor Synapse-Based Morris–Lecar Model: Bifurcation Analyses and FPGA-Based Validations for Periodic and Chaotic Bursting/Spiking Firings. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050045.	1.7	42
40	Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Science China Technological Sciences, 2020, 63, 1035-1044.	4.0	47
41	Hidden dynamics in a fractional-order memristive Hindmarsh–Rose model. Nonlinear Dynamics, 2020, 100, 891-906.	5.2	42
42	Bifurcation analysis and circuit implementation for a tabu learning neuron model. AEU - International Journal of Electronics and Communications, 2020, 121, 153235.	2.9	25
43	Hybrid State Variable Incremental Integral for Reconstructing Extreme Multistability in Memristive Jerk System with Cubic Nonlinearity. Complexity, 2019, 2019, 1-16.	1.6	21
44	Extremely slow passages in low-pass filter-based memristive oscillator. Nonlinear Dynamics, 2019, 97, 2339-2353.	5.2	31
45	Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit. AEU - International Journal of Electronics and Communications, 2019, 110, 152840.	2.9	34
46	Periodically Switched Memristor Initial Boosting Behaviors in Memristive Hypogenetic Jerk System. IEEE Access, 2019, 7, 145022-145029.	4.2	22
47	Inductor-free multi-stable Chua's circuit constructed by improved PI-type memristor emulator and active Sallen–Key high-pass filter. European Physical Journal: Special Topics, 2019, 228, 1983-1994.	2.6	5
48	Generating Multi-Scroll Chua's Attractors via Simplified Piecewise-Linear Chua's Diode. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 4767-4779.	5.4	127
49	Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments. AEU - International Journal of Electronics and Communications, 2019, 111, 152894.	2.9	64
50	Chaotic Bursting Dynamics and Coexisting Multistable Firing Patterns in 3D Autonomous Morris–Lecar Model and Microcontroller-Based Validations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950134.	1.7	67
51	Dynamical Effects of Neuron Activation Gradient on Hopfield Neural Network: Numerical Analyses and Hardware Experiments. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1930010.	1.7	54
52	Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system. Chaos, Solitons and Fractals, 2019, 121, 178-185.	5.1	90
53	Dynamical effects of memristive load on peak current mode buck-boost switching converter. Chaos, Solitons and Fractals, 2019, 122, 69-79.	5.1	32
54	Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit. Nonlinear Dynamics, 2019, 96, 1879-1894.	5.2	100

#	Article	IF	CITATIONS
55	Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 1706-1716.	2.6	46
56	Complex Dynamical Behaviors of a Fractional-Order System Based on a Locally Active Memristor. Complexity, 2019, 2019, 1-13.	1.6	11
57	Abundant Coexisting Multiple Attractors' Behaviors in Three-Dimensional Sine Chaotic System. Complexity, 2019, 2019, 1-11.	1.6	7
58	Dimensionality Reduction Reconstitution for Extreme Multistability in Memristor-Based Colpitts System. Complexity, 2019, 2019, 1-12.	1.6	3
59	Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dynamics, 2019, 95, 3385-3399.	5.2	181
60	AC-induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dynamics, 2018, 92, 1695-1706.	5.2	71
61	Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator. Chaos, Solitons and Fractals, 2018, 109, 146-153.	5.1	55
62	Chaos in a second-order non-autonomous Wien-bridge oscillator without extra nonlinearity. Circuit World, 2018, 44, 108-114.	0.9	26
63	Coexistence of multiple bifurcation modes in memristive diode-bridge-based canonical Chua's circuit. International Journal of Electronics, 2018, 105, 1159-1169.	1.4	40
64	Coexistence of Multiple Attractors in an Active Diode Pair Based Chua's Circuit. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850019.	1.7	41
65	Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Communications in Nonlinear Science and Numerical Simulation, 2018, 57, 264-275.	3.3	230
66	Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator. Chaos, Solitons and Fractals, 2018, 106, 161-170.	5.1	69
67	Controlling extreme multistability of memristor emulator-based dynamical circuit in flux–charge domain. Nonlinear Dynamics, 2018, 91, 1395-1412.	5.2	108
68	Initial conditions-related dynamical behaviors in PI-type memristor emulator-based canonical Chua's circuit. Circuit World, 2018, 44, 178-186.	0.9	12
69	Flux-Charge Analysis of Initial State-Dependent Dynamical Behaviors of a Memristor Emulator-Based Chua's Circuit. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850120.	1.7	30
70	State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium. Chaos, Solitons and Fractals, 2018, 115, 313-324.	5.1	41
71	Numerical analyses and breadboard experiments of twin attractors in two-neuron-based non-autonomous Hopfield neural network. European Physical Journal: Special Topics, 2018, 227, 777-786.	2.6	22
72	Two-neuron-based non-autonomous memristive Hopfield neural network: Numerical analyses and hardware experiments. AEU - International Journal of Electronics and Communications, 2018, 96, 66-74.	2.9	66

#	Article	IF	CITATIONS
73	Memristor-Based Canonical Chua's Circuit: Extreme Multistability in Voltage-Current Domain and Its Controllability in Flux-Charge Domain. Complexity, 2018, 2018, 1-13.	1.6	34
74	Emerging multiâ€doubleâ€scroll attractor from variableâ€boostable chaotic system excited by multiâ€level pulse. Journal of Engineering, 2018, 2018, 42-44.	1.1	8
75	Third-order RLCM-four-elements-based chaotic circuit and its coexisting bubbles. AEU - International Journal of Electronics and Communications, 2018, 94, 26-35.	2.9	50
76	Three-Dimensional Memristive Hindmarsh–Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors. Complexity, 2018, 2018, 1-11.	1.6	95
77	Third-Order Generalized Memristor-Based Chaotic Circuit and its Complex Dynamics. , 2018, , .		2
78	Two-memristor-based Chua's hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dynamics, 2017, 89, 1157-1171.	5.2	214
79	Hidden extreme multistability in memristive hyperchaotic system. Chaos, Solitons and Fractals, 2017, 94, 102-111.	5.1	344
80	Chaotic bursting in memristive diode bridge oupled Sallenâ€Key lowpass filter. Electronics Letters, 2017, 53, 1104-1105.	1.0	51
81	Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dynamics, 2017, 90, 2359-2369.	5.2	88
82	Multistability induced by two symmetric stable node-foci in modified canonical Chua's circuit. Nonlinear Dynamics, 2017, 87, 789-802.	5.2	78
83	Coexisting Behaviors of Asymmetric Attractors in Hyperbolic-Type Memristor based Hopfield Neural Network. Frontiers in Computational Neuroscience, 2017, 11, 81.	2.1	137
84	Parameter-Independent Dynamical Behaviors in Memristor-Based Wien-Bridge Oscillator. Mathematical Problems in Engineering, 2017, 2017, 1-13.	1.1	8
85	Sallen–Key lowâ€pass filterâ€based inductorâ€free simplified Chua's circuit. Journal of Engineering, 2017, 2017, 653-655.	1.1	4
86	Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dynamics, 2016, 86, 1711-1723.	5.2	194
87	Extreme multistability in a memristive circuit. Electronics Letters, 2016, 52, 1008-1010.	1.0	198
88	Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit. Chaos, Solitons and Fractals, 2016, 83, 186-200.	5.1	238
89	Hidden attractors in a practical Chua's circuit based on a modified Chua's diode. Electronics Letters, 2016, 52, 23-25.	1.0	27
90	Inductor-free simplified Chua's circuit only using two-op-amp-based realization. Nonlinear Dynamics, 2016, 84, 511-525.	5.2	46

Mo Chen

#	Article	IF	CITATIONS
91	A FEASIBLE MEMRISTIVE CHUA'S CIRCUIT VIA BRIDGING A GENERALIZED MEMRISTOR. Journal of Applied Analysis and Computation, 2016, 6, 1152-1163.	0.5	5
92	Hidden dynamics and multiâ€stability in an improved thirdâ€order Chua's circuit. Journal of Engineering, 2015, 2015, 322-324.	1.1	6
93	Self-Excited and Hidden Attractors Found Simultaneously in a Modified Chua's Circuit. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550075.	1.7	57
94	Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua's circuit. Nonlinear Dynamics, 2015, 81, 215-226.	5.2	159
95	Finding hidden attractors in improved memristorâ€based Chua''s circuit. Electronics Letters, 2015, 51, 462-464.	1.0	63
96	Threshold flux-controlled memristor model and its equivalent circuit implementation. Chinese Physics B, 2014, 23, 118401.	1.4	13
97	A Memristive Diode Bridge-Based Canonical Chua's Circuit. Entropy, 2014, 16, 6464-6476.	2.2	50
98	Asymmetric memristive Chua's chaotic circuits. International Journal of Electronics, 0, , 1-18.	1.4	17
99	Network dynamics of coupled Chua circuits: comparison of different coupling elements. European Physical Journal: Special Topics, 0, , .	2.6	2