
Paul R H Robson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8062786/publications.pdf Version: 2024-02-01

PALLE P. H. PORSON

#	Article	IF	CITATIONS
1	Food vs. fuel: the use of land for lignocellulosic â€~next generation' energy crops that minimize competition with primary food production. GCB Bioenergy, 2012, 4, 1-19.	2.5	240
2	Environmental costs and benefits of growing <i>Miscanthus</i> for bioenergy in the <scp>UK</scp> . GCB Bioenergy, 2017, 9, 489-507.	2.5	183
3	Progress in upscaling <i>Miscanthus</i> biomass production for the European bioâ€economy with seedâ€based hybrids. GCB Bioenergy, 2017, 9, 6-17.	2.5	156
4	Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Molecular Biology, 1995, 27, 1071-1083.	2.0	151
5	Breeding progress and preparedness for massâ€scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy, 2019, 11, 118-151.	2.5	116
6	The impact of soil salinity on the yield, composition and physiology of the bioenergy grass <i>MiscanthusÂ</i> × <i>Âgiganteus</i> . GCB Bioenergy, 2017, 9, 92-104.	2.5	106
7	Genomeâ€wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass <i>Miscanthus sinensis</i> . New Phytologist, 2014, 201, 1227-1239.	3.5	96
8	Land use change from C3 grassland to C4 <i>Miscanthus</i> : effects on soil carbon content and estimated mitigation benefit after six years. GCB Bioenergy, 2014, 6, 360-370.	2.5	83
9	Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus. Frontiers in Plant Science, 2013, 4, 468.	1.7	82
10	Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable yield increase in Miscanthus. Journal of Experimental Botany, 2013, 64, 4143-4155.	2.4	66
11	Phenotypic Variation in Senescence in Miscanthus: Towards Optimising Biomass Quality and Quantity. Bioenergy Research, 2012, 5, 95-105.	2.2	63
12	Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. Journal of Experimental Botany, 2013, 64, 541-552.	2.4	48
13	Phenomics analysis of drought responses in <i>Miscanthus</i> collected from different geographical locations. GCB Bioenergy, 2017, 9, 78-91.	2.5	39
14	Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. Journal of Experimental Botany, 2013, 64, 2373-2383.	2.4	36
15	Bioinformatics in the orphan crops. Briefings in Bioinformatics, 2009, 10, 645-653.	3.2	35
16	Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigraâ€. Tree Physiology, 2018, 38, 320-339.	1.4	35
17	Thermal requirements for seed germination in Miscanthus compared with Switchgrass (Panicum) Tj ETQq1 1	0.784314 rgBT 2.5	- Overlock 33
18	Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. Scientia Horticulturae, 2021, 279, 109896.	1.7	32

PAUL R H ROBSON

#	Article	IF	CITATIONS
19	Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments. Annals of Botany, 2019, 124, 653-674.	1.4	30
20	Contrasting geographic patterns of genetic variation for molecular markers vs. phenotypic traits in the energy grass <i>Miscanthus sinensis</i> . GCB Bioenergy, 2013, 5, 562-571.	2.5	28
21	Breeding Strategies to Improve Miscanthus as a Sustainable Source of Biomass for Bioenergy and Biorenewable Products. Agronomy, 2019, 9, 673.	1.3	28
22	Can the optimisation of pop-up agriculture in remote communities help feed the world?. Global Food Security, 2018, 18, 35-43.	4.0	26
23	Towards <i>Miscanthus</i> combustion quality improvement: the role of flowering and senescence. GCB Bioenergy, 2017, 9, 891-908.	2.5	25
24	Assessing seed priming, sowing date, and mulch film to improve the germination and survival of directâ€sown <i>Miscanthus sinensis</i> in the United Kingdom. GCB Bioenergy, 2018, 10, 612-627.	2.5	23
25	Review: Improving the Impact of Plant Science on Urban Planning and Design. Buildings, 2016, 6, 48.	1.4	22
26	Characterization of phenology, physiology, morphology and biomass traits across a broad Euroâ€Mediterranean ecotypic panel of the lignocellulosic feedstock <i>Arundo donax</i> . GCB Bioenergy, 2019, 11, 152-170.	2.5	21
27	Morphological and Physiological Traits that Explain Yield Response to Drought Stress in Miscanthus. Agronomy, 2020, 10, 1194.	1.3	18
28	Genetic relationships between spring emergence, canopy phenology, and biomass yield increase the accuracy of genomic prediction in Miscanthus. Journal of Experimental Botany, 2017, 68, 5093-5102.	2.4	13
29	Measured and modelled effect of landâ€use change from temperate grassland to Miscanthus on soil carbon stocks after 12 years. GCB Bioenergy, 2019, 11, 1173-1186.	2.5	13
30	The Effects of Moderate and Severe Salinity on Composition and Physiology in the Biomass Crop Miscanthus × giganteus. Plants, 2020, 9, 1266.	1.6	12
31	Using k-NN to analyse images of diverse germination phenotypes and detect single seed germination in Miscanthus sinensis. Plant Methods, 2018, 14, 5.	1.9	10
32	Genomic index selection provides a pragmatic framework for setting and refining multi-objective breeding targets in Miscanthus. Annals of Botany, 2019, 124, 521-529.	1.4	10
33	Wild Miscanthus Germplasm in a Drought-Affected Area: Physiology and Agronomy Appraisals. Agronomy, 2020, 10, 679.	1.3	10
34	Screening for potential co-products in a Miscanthus sinensis mapping family by liquid chromatography with mass spectrometry detection. Phytochemistry, 2014, 105, 186-196.	1.4	8
35	Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C 4 rhizomatous grasses Miscanthus and switchgrass. GCB Bioenergy, 2021, 13, 98-111.	2.5	8
36	Using a Taguchi DOE to investigate factors and interactions affecting germination in Miscanthus sinensis. Scientific Reports, 2020, 10, 1602.	1.6	5

PAUL R H ROBSON

#	Article	IF	CITATIONS
37	Stem growth characteristics of high yielding <i>Miscanthus</i> correlate with yield, development and intraspecific competition within plots. GCB Bioenergy, 2019, 11, 1075-1085.	2.5	3
38	Allelopathic and intraspecific growth competition effects establishment of direct sown Miscanthus. GCB Bioenergy, 2020, 12, 396-409.	2.5	3
39	Seasonal Dynamics of Dry Matter Accumulation and Nutrients in a Mature Miscanthus × giganteus Stand in the Lower Silesia Region of Poland. Agronomy, 2021, 11, 1679.	1.3	2
40	Optimizing seedâ€based Miscanthus plug plant production with supplemental heat and light, compost type and volume. GCB Bioenergy, 0, , .	2.5	2
41	A flexible quantitative methodology for the analysis of gene-flow between conventionally bred maize populations using microsatellite markers. Theoretical and Applied Genetics, 2011, 122, 819-829.	1.8	0