
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8062418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene therapy comes of age. Science, 2018, 359, .	12.6	936
2	Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nature Biotechnology, 2010, 28, 839-847.	17.5	618
3	Engraftment of gene–modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nature Medicine, 1995, 1, 1017-1023.	30.7	616
4	Transplantation Outcomes for Severe Combined Immunodeficiency, 2000–2009. New England Journal of Medicine, 2014, 371, 434-446.	27.0	594
5	Newborn Screening for Severe Combined Immunodeficiency in 11 Screening Programs in the United States. JAMA - Journal of the American Medical Association, 2014, 312, 729.	7.4	586
6	Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2567-2571.	7.1	414
7	Analyzing CRISPR genome-editing experiments with CRISPResso. Nature Biotechnology, 2016, 34, 695-697.	17.5	410
8	Stable transduction of quiescent CD34 ⁺ CD38 ^{â^'} human hematopoietic cells by HIV-1-based lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2988-2993.	7.1	395
9	Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science Translational Medicine, 2016, 8, 360ra134.	12.4	386
10	A Modified γ-Retrovirus Vector for X-Linked Severe Combined Immunodeficiency. New England Journal of Medicine, 2014, 371, 1407-1417.	27.0	358
11	Occurrence of leukaemia following gene therapy of X-linked SCID. Nature Reviews Cancer, 2003, 3, 477-488.	28.4	323
12	T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nature Medicine, 1998, 4, 775-780.	30.7	321
13	A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. Cell Stem Cell, 2016, 18, 533-540.	11.1	307
14	Immune response to green fluorescent protein: implications for gene therapy. Gene Therapy, 1999, 6, 1305-1312.	4.5	306
15	Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: The Primary Immune Deficiency Treatment Consortium experience. Journal of Allergy and Clinical Immunology, 2014, 133, 1092-1098.	2.9	301
16	Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood, 2015, 125, 2597-2604.	1.4	292
17	A Clinical Trial of Retroviral-Mediated Transfer of arev-Responsive Element Decoy Gene Into CD34+Cells From the Bone Marrow of Human Immunodeficiency Virus-1–Infected Children. Blood, 1999, 94, 368-371.	1.4	258
18	Redirecting Specificity of T-Cell Populations For CD19 Using the <i>Sleeping Beauty</i> System. Cancer Research, 2008, 68, 2961-2971.	0.9	232

#	Article	IF	CITATIONS
19	Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood, 2012, 120, 3635-3646.	1.4	222
20	Genetic therapies against HIV. Nature Biotechnology, 2007, 25, 1444-1454.	17.5	214
21	Immune reconstitution and survival of 100 SCID patients post–hematopoietic cell transplant: a PIDTC natural history study. Blood, 2017, 130, 2718-2727.	1.4	212
22	Adoptive Transfer of MART-1 T-Cell Receptor Transgenic Lymphocytes and Dendritic Cell Vaccination in Patients with Metastatic Melanoma. Clinical Cancer Research, 2014, 20, 2457-2465.	7.0	204
23	Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2414-2419.	7.1	190
24	Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: Results of the first 2 years. Journal of Allergy and Clinical Immunology, 2013, 132, 140-150.e7.	2.9	189
25	Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell, 2017, 21, 574-590.	11.1	181
26	Transient Gene Expression by Nonintegrating Lentiviral Vectors. Molecular Therapy, 2006, 13, 1121-1132.	8.2	175
27	Lentiviral gene therapy for X-linked chronic granulomatous disease. Nature Medicine, 2020, 26, 200-206.	30.7	175
28	Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nature Methods, 2017, 14, 521-530.	19.0	165
29	FLT3 Ligand Preserves the Ability of Human CD34+ Progenitors to Sustain Long-Term Hematopoiesis in Immune-Deficient Mice After Ex Vivo Retroviral-Mediated Transduction. Blood, 1997, 89, 446-456.	1.4	157
30	CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells. Molecular Therapy, 2016, 24, 1561-1569.	8.2	157
31	Critical Factors Influencing Stable Transduction of Human CD34+ Cells with HIV-1-Derived Lentiviral Vectors. Molecular Therapy, 2000, 2, 71-80.	8.2	154
32	Long-term efficacy of enzyme replacement therapy for Adenosine deaminase (ADA)-deficient Severe Combined Immunodeficiency (SCID). Clinical Immunology, 2005, 117, 133-143.	3.2	154
33	Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood, 2003, 102, 3478-3482.	1.4	149
34	Newborn Screening for Severe Combined Immunodeficiency and T-cell Lymphopenia in California, 2010–2017. Pediatrics, 2019, 143, .	2.1	148
35	American society of gene therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Molecular Therapy, 2003, 8, 180-187.	8.2	147
36	Improved Expression in Hematopoietic and Lymphoid Cells in Mice After Transplantation of Bone Marrow Transduced With a Modified Retroviral Vector. Blood, 1999, 94, 3349-3357.	1.4	146

#	Article	IF	CITATIONS
37	Retroviral Transfer of the Glucocerebrosidase Gene into CD34 ⁺ Cells from Patients with Gaucher Disease: <i>In Vivo</i> Detection of Transduced Cells without Myeloablation. Human Gene Therapy, 1998, 9, 2629-2640.	2.7	144
38	Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20111-20116.	7.1	144
39	Marrow-Derived Cells as Vehicles for Delivery of Gene Therapy to Pulmonary Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 645-651.	2.9	138
40	Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nature Medicine, 2003, 9, 463-468.	30.7	134
41	Comparison of the Effects of Growth Factors on Retroviral Vector-Mediated Gene Transfer and the Proliferative Status of Human Hematopoietic Progenitor Cells. Human Gene Therapy, 1990, 1, 257-268.	2.7	131
42	Inhibition of HIV-1 in human T-lymphocytes by retrovirally transduced anti-tat and rev hammerhead ribozymes. Gene, 1994, 149, 33-39.	2.2	129
43	SCID genotype and 6-month posttransplant CD4 count predict survival and immune recovery. Blood, 2018, 132, 1737-1749.	1.4	128
44	Autologous Ex Vivo Lentiviral Gene Therapy for Adenosine Deaminase Deficiency. New England Journal of Medicine, 2021, 384, 2002-2013.	27.0	122
45	Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome. Cell Reports, 2018, 23, 2606-2616.	6.4	119
46	Inhibition of Human Immunodeficiency Virus-1 (HIV-1) Replication After Transduction of Granulocyte Colony-Stimulating Factor–Mobilized CD34+ Cells From HIV-1–Infected Donors Using Retroviral Vectors Containing Anti–HIV-1 Genes. Blood, 1997, 89, 2259-2267.	1.4	116
47	Neonatal Gene Therapy of MPS I Mice by Intravenous Injection of a Lentiviral Vector. Molecular Therapy, 2005, 11, 776-789.	8.2	114
48	Retroviral Transfer of the Glucocerebrosidase Gene into CD34+ Cells from Patients with Gaucher Disease: In Vivo Detection of Transduced Cells without Myeloablation. Human Gene Therapy, 1998, 9, 2629-2640.	2.7	112
49	Improving cellular therapy for primary immune deficiency diseases: Recognition, diagnosis, and management. Journal of Allergy and Clinical Immunology, 2009, 124, 1152-1160.e12.	2.9	110
50	Consensus approach for the management of severe combined immune deficiency caused by adenosine deaminase deficiency. Journal of Allergy and Clinical Immunology, 2019, 143, 852-863.	2.9	104
51	Factors Influencing the Titer and Infectivity of Lentiviral Vectors. Human Gene Therapy, 2004, 15, 976-988.	2.7	102
52	Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage– colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood, 2000, 96, 1317-1326.	1.4	100
53	The Natural History of Children with Severe Combined Immunodeficiency: Baseline Features of the First Fifty Patients of the Primary Immune Deficiency Treatment Consortium Prospective Study 6901. Journal of Clinical Immunology, 2013, 33, 1156-1164.	3.8	100
54	Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1408-16.	7.1	97

#	Article	IF	CITATIONS
55	β-globin gene transfer to human bone marrow for sickle cell disease. Journal of Clinical Investigation, 2013, 123, 3317-3330.	8.2	92
56	Infection of Human Marrow Stroma by Human Immunodeficiency Virus-1 (HIV-1) Is Both Required and Sufficient for HIV-1–Induced Hematopoietic Suppression In Vitro: Demonstration by Gene Modification of Primary Human Stroma. Blood, 1997, 90, 1787-1798.	1.4	91
57	Gene Therapy Fulfilling Its Promise. New England Journal of Medicine, 2009, 360, 518-521.	27.0	88
58	Excellent outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome: a PIDTC report. Blood, 2020, 135, 2094-2105.	1.4	87
59	Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates. Molecular Therapy, 2019, 27, 1389-1406.	8.2	83
60	An In Vitro Model of Human Red Blood Cell Production From Hematopoietic Progenitor Cells. Blood, 1998, 91, 2664-2671.	1.4	82
61	Advances in lentiviral vector design for gene-modification of hematopoietic stem cells. Current Opinion in Biotechnology, 2002, 13, 429-436.	6.6	81
62	Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations. Journal of Clinical Immunology, 2017, 37, 626-637.	3.8	78
63	Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34+ cells. Molecular Therapy, 2005, 12, 77-86.	8.2	77
64	Preclinical Demonstration of Lentiviral Vector-mediated Correction of Immunological and Metabolic Abnormalities in Models of Adenosine Deaminase Deficiency. Molecular Therapy, 2014, 22, 607-622.	8.2	77
65	Gene therapy of RAG-2â ''/â^' mice: sustained correction of the immunodeficiency. Blood, 2002, 100, 3942-3949.	1.4	76
66	Treatment of the mouse model of mucopolysaccharidosis I with retrovirally transduced bone marrow. Molecular Genetics and Metabolism, 2003, 79, 233-244.	1.1	76
67	Integrated Self-Inactivating Lentiviral Vectors Produce Full-Length Genomic Transcripts Competent for Encapsidation and Integration. Journal of Virology, 2004, 78, 8421-8436.	3.4	76
68	Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 replication. Cell Reports, 2021, 35, 108940.	6.4	76
69	Hematopoietic Stem Cell Gene Therapy for the Multisystemic Lysosomal Storage Disorder Cystinosis. Molecular Therapy, 2013, 21, 433-444.	8.2	74
70	The enhanced green fluorescent protein (eGFP) is minimally immunogenic in C57BL/6 mice. Gene Therapy, 2001, 8, 1813-1814.	4.5	71
71	Allogeneic hematopoietic cell transplantation for primary immune deficiency diseases: Current status and critical needs. Journal of Allergy and Clinical Immunology, 2008, 122, 1087-1096.	2.9	70
72	In Vivo Biosafety Model to Assess the Risk of Adverse Events From Retroviral and Lentiviral Vectors. Molecular Therapy, 2008, 16, 1308-1315.	8.2	70

#	Article	IF	CITATIONS
73	Improving Gene Editing Outcomes in Human Hematopoietic Stem and Progenitor Cells by Temporal Control of DNA Repair. Stem Cells, 2019, 37, 284-294.	3.2	70
74	Clinical efficacy of gene-modified stem cells in adenosine deaminase–deficient immunodeficiency. Journal of Clinical Investigation, 2017, 127, 1689-1699.	8.2	70
75	Rhesus Monkey Model for Fetal Gene Transfer: Studies with Retroviral- Based Vector Systems. Molecular Therapy, 2001, 3, 128-138.	8.2	69
76	Intrapulmonary and intramyocardial gene transfer in rhesus monkeys (Macaca mulatta): Safety and efficiency of HIV-1-derived lentiviral vectors for fetal gene delivery. Molecular Therapy, 2005, 12, 87-98.	8.2	66
77	The current status of gene therapy using hematopoietic stem cells. Current Opinion in Pediatrics, 1995, 7, 56-63.	2.0	65
78	The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Therapy, 2007, 14, 1298-1304.	4.5	65
79	Hematopoietic stem cells for cancer immunotherapy. Immunological Reviews, 2014, 257, 237-249.	6.0	65
80	Primary Immune Deficiency Treatment Consortium (PIDTC) report. Journal of Allergy and Clinical Immunology, 2014, 133, 335-347.e11.	2.9	65
81	Artificial thymic organoids represent a reliable tool to study T-cell differentiation in patients with severe T-cell lymphopenia. Blood Advances, 2020, 4, 2611-2616.	5.2	65
82	Human Gene Marker/Therapy Clinical Protocols (Complete Updated Listings). Human Gene Therapy, 2000, 11, 919-979.	2.7	64
83	Update on gene therapy for immunodeficiencies. Clinical Immunology, 2010, 135, 247-254.	3.2	64
84	The genetic landscape of severe combined immunodeficiency in the United States and Canada in the current era (2010-2018). Journal of Allergy and Clinical Immunology, 2019, 143, 405-407.	2.9	64
85	Integrase-defective Lentiviral Vectors as a Delivery Platform for Targeted Modification of Adenosine Deaminase Locus. Molecular Therapy, 2013, 21, 1705-1717.	8.2	63
86	Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. Blood, 2019, 133, 2104-2108.	1.4	63
87	Lentiviral Vector Gene Transfer into Fetal Rhesus Monkeys (Macaca mulatta): Lung-Targeting Approaches. Molecular Therapy, 2001, 4, 614-621.	8.2	62
88	Highly efficient large-scale lentiviral vector concentration by tandem tangential flow filtration. Journal of Virological Methods, 2011, 177, 1-9.	2.1	60
89	Gene Therapy Using Hematopoietic Stem Cells: Sisyphus Approaches the Crest. Human Gene Therapy, 2000, 11, 1259-1267.	2.7	58
90	Novel Pol II Fusion Promoter Directs Human Immunodeficiency Virus Type 1-Inducible Coexpression of a Short Hairpin RNA and Protein. Journal of Virology, 2006, 80, 1863-1873.	3.4	56

#	Article	IF	CITATIONS
91	In Vivo Transduction by Intravenous Injection of a Lentiviral Vector Expressing Human ADA into Neonatal ADA Gene Knockout Mice: A Novel Form of Enzyme Replacement Therapy for ADA Deficiency. Molecular Therapy, 2006, 13, 1110-1120.	8.2	56
92	The Effects of Campath 1H upon Graft-Versus-Host Disease, Infection, Relapse, and Immune Reconstitution in Recipients of Pediatric Unrelated Transplants. Biology of Blood and Marrow Transplantation, 2007, 13, 584-593.	2.0	56
93	Progressive Declines in Neurocognitive Function Among Survivors of Hematopoietic Stem Cell Transplantation for Pediatric Hematologic Malignancies. Journal of Pediatric Hematology/Oncology, 2008, 30, 411-418.	0.6	56
94	Stable gene transfer to human CD34+ hematopoietic cells using the Sleeping Beauty transposon. Experimental Hematology, 2006, 34, 1333-1343.	0.4	55
95	Manipulation of <i>OCT4</i> Levels in Human Embryonic Stem Cells Results in Induction of Differential Cell Types. Experimental Biology and Medicine, 2007, 232, 1368-1380.	2.4	55
96	Gene Therapy for the Treatment of Recurrent Pediatric Malignant Astrocytomas with In Vivo Tumor Transduction with the Herpes Simplex Thymidine Kinase Gene/Ganciclovir System. Childrens Hospital, Los Angeles, California. Human Gene Therapy, 1994, 5, 863-890.	2.7	54
97	Retroviral Mediated Transfer of the cDNA for Human Glucocerebrosidase into Hematopoietic Stem Cells of Patients with Gaucher Disease. A Phase I Study. National Institutes of Health, Bethesda, Maryland. Human Gene Therapy, 1996, 7, 231-253.	2.7	54
98	T lymphocyte ontogeny in adenosine deaminase-deficient severe combined immune deficiency after treatment with polyethylene glycol-modified adenosine deaminase Journal of Clinical Investigation, 1993, 92, 596-602.	8.2	54
99	Fetal Gene Transfer Using Lentiviral Vectors and the Potential for Germ Cell Transduction in Rhesus Monkeys (Macaca mulatta). Human Gene Therapy, 2005, 16, 417-425.	2.7	53
100	Gene Therapy for the Treatment of Primary Immune Deficiencies. Current Allergy and Asthma Reports, 2016, 16, 39.	5.3	52
101	Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Research and Therapy, 2017, 8, 217.	5.5	52
102	Gene therapy for genetic haematological disorders and immunodeficiencies. Journal of Internal Medicine, 2001, 249, 379-390.	6.0	50
103	Retrovirally transduced bone marrow has a therapeutic effect on brain in the mouse model of mucopolysaccharidosis IIIB. Molecular Genetics and Metabolism, 2004, 82, 286-295.	1.1	50
104	Long-term in vivo monitoring of mouse and human hematopoietic stem cell engraftment with a human positron emission tomography reporter gene. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1857-1862.	7.1	50
105	Allelic Exclusion and Peripheral Reconstitution by TCR Transgenic T Cells Arising From Transduced Human Hematopoietic Stem/Progenitor Cells. Molecular Therapy, 2013, 21, 1044-1054.	8.2	49
106	Modification of Hematopoietic Stem/Progenitor Cells with CD19-Specific Chimeric Antigen Receptors as a Novel Approach for Cancer Immunotherapy. Human Gene Therapy, 2013, 24, 824-839.	2.7	49
107	Development of Hematopoietic Stem Cell-Engineered Invariant Natural Killer T Cell Therapy for Cancer. Cell Stem Cell, 2019, 25, 542-557.e9.	11.1	48
108	Domain-swapped T cell receptors improve the safety of TCR gene therapy. ELife, 2016, 5, .	6.0	48

#	Article	IF	CITATIONS
109	Toward Gene Therapy for Gaucher Disease. Human Gene Therapy, 1991, 2, 101-105.	2.7	47
110	Stable Transgene Expression in Primitive Human CD34 ⁺ Hematopoietic Stem/Progenitor Cells, Using the <i>Sleeping Beauty</i> Transposon System. Human Gene Therapy, 2009, 20, 1607-1626.	2.7	46
111	Comparison of Gene Transfer Efficiencies and Gene Expression Levels Achieved with Equine Infectious Anemia Virus- and Human Immunodeficiency Virus Type 1-Derived Lentivirus Vectors. Journal of Virology, 2002, 76, 1510-1515.	3.4	45
112	Myeloid dysplasia and bone marrow hypocellularity in adenosine deaminase-deficient severe combined immune deficiency. Blood, 2011, 118, 2688-2694.	1.4	45
113	Reactivating Fetal Hemoglobin Expression in Human Adult Erythroblasts Through BCL11A Knockdown Using Targeted Endonucleases. Molecular Therapy - Nucleic Acids, 2016, 5, e351.	5.1	45
114	Lentiviral Gene Therapy in HSCs Restores Lineage-Specific Foxp3 Expression and Suppresses Autoimmunity in a Mouse Model of IPEX Syndrome. Cell Stem Cell, 2019, 24, 309-317.e7.	11.1	45
115	HIV-1-derived lentiviral vectors and fetal route of administration on transgene biodistribution and expression in rhesus monkeys. Gene Therapy, 2005, 12, 821-830.	4.5	44
116	Direct FGF-2 Gene Transfer via Recombinant Adeno-Associated Virus Vectors Stimulates Cell Proliferation, Collagen Production, and the Repair of Experimental Lesions in the Human ACL. American Journal of Sports Medicine, 2013, 41, 194-202.	4.2	44
117	Lentivirus Mediated Correction of Artemis-Deficient Severe Combined Immunodeficiency. Human Gene Therapy, 2017, 28, 112-124.	2.7	44
118	Gene Therapy for Genetic Diseases. Cancer Investigation, 1989, 7, 179-192.	1.3	43
119	Morphological Analysis and Lentiviral Transduction of Fetal Monkey Bone Marrow-Derived Mesenchymal Stem Cells. Molecular Therapy, 2004, 9, 112-123.	8.2	43
120	CD4+CD25â^' T Cells Transduced to Express MHC Class I-Restricted Epitope-Specific TCR Synthesize Th1 Cytokines and Exhibit MHC Class I-Restricted Cytolytic Effector Function in a Human Melanoma Model. Journal of Immunology, 2008, 181, 1063-1070.	0.8	43
121	From Skin Biopsy to Neurons Through a Pluripotent Intermediate Under Good Manufacturing Practice Protocols. Stem Cells Translational Medicine, 2012, 1, 36-43.	3.3	43
122	Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status. Stem Cell Research and Therapy, 2013, 4, 87.	5.5	43
123	How We Manage Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA SCID). Journal of Clinical Immunology, 2017, 37, 351-356.	3.8	43
124	Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction. Blood, 2012, 120, 3677-3687.	1.4	42
125	Lentivirus Vectors Incorporating the Immunoglobulin Heavy Chain Enhancer and Matrix Attachment Regions Provide Position-Independent Expression in B Lymphocytes. Journal of Virology, 2003, 77, 7341-7351.	3.4	40
126	Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter. Nucleic Acids Research, 2015, 43, 682-690.	14.5	40

#	Article	IF	CITATIONS
127	Myoblast Gene Therapy in Canine Mucopolysaccharidosis I: Abrogation by an Immune Response tol±-l-Iduronidase. Human Gene Therapy, 1996, 7, 1595-1603.	2.7	39
128	Combination of CD80 and Granulocyte-Macrophage Colony-Stimulating Factor Coexpression by a Leukemia Cell Vaccine: Preclinical Studies in a Murine Model Recapitulating Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Human Gene Therapy, 1999, 10, 2109-2122.	2.7	39
129	Lentiviral Vector Transduction of a Dominant-negative Rev Gene Into Human CD34+ Hematopoietic Progenitor Cells Potently Inhibits Human Immunodeficiency Virus-1 Replication. Molecular Therapy, 2007, 15, 76-85.	8.2	39
130	Development of allogeneic HSC-engineered iNKT cells for off-the-shelf cancer immunotherapy. Cell Reports Medicine, 2021, 2, 100449.	6.5	39
131	New frontiers in the therapy of primary immunodeficiency: From gene addition to gene editing. Journal of Allergy and Clinical Immunology, 2017, 139, 726-732.	2.9	38
132	PGE2 and Poloxamer Synperonic F108 Enhance Transduction of Human HSPCs with a β-Globin Lentiviral Vector. Molecular Therapy - Methods and Clinical Development, 2019, 13, 390-398.	4.1	38
133	Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector. Gene Therapy, 2010, 17, 1244-1252.	4.5	37
134	Propagating Humanized BLT Mice for the Study of Human Immunology and Immunotherapy. Stem Cells and Development, 2016, 25, 1863-1873.	2.1	37
135	B-cell differentiation and IL-21 response in IL2RG/JAK3 SCID patients after hematopoietic stem cell transplantation. Blood, 2018, 131, 2967-2977.	1.4	37
136	The Moloney Murine Leukemia Virus Repressor Binding Site Represses Expression in Murine and Human Hematopoietic Stem Cells. Journal of Virology, 2003, 77, 9439-9450.	3.4	36
137	Prolonged pancytopenia in a gene therapy patient with ADA-deficient SCID and trisomy 8 mosaicism: a case report. Blood, 2007, 109, 503-506.	1.4	36
138	A CD19/Fc fusion protein for detection of anti-CD19 chimeric antigen receptors. Journal of Translational Medicine, 2013, 11, 23.	4.4	36
139	Ethical and regulatory aspects of genome editing. Blood, 2016, 127, 2553-2560.	1.4	36
140	Infections in Infants with SCID: Isolation, Infection Screening, and Prophylaxis in PIDTC Centers. Journal of Clinical Immunology, 2021, 41, 38-50.	3.8	36
141	Constitutive HOXA5 Expression Inhibits Erythropoiesis and Increases Myelopoiesis From Human Hematopoietic Progenitors. Blood, 1999, 94, 519-528.	1.4	36
142	Reconstitution of T cell receptor signaling in ZAP-70-deficient cells by retroviral transduction of the ZAP-70 gene Journal of Experimental Medicine, 1996, 184, 2031-2036.	8.5	35
143	Successful Hematopoietic Stem Cell Transplantation for Niemann-Pick Disease Type B. Pediatrics, 2005, 116, 1022-1025.	2.1	35
144	Gene Therapies for Primary Immune Deficiencies. Frontiers in Immunology, 2021, 12, 648951.	4.8	35

#	Article	IF	CITATIONS
145	Gene Delivery to Human B-Precursor Acute Lymphoblastic Leukemia Cells. Blood, 1998, 92, 3537-3545.	1.4	34
146	<i>In Utero</i> Injection of <i>α</i> -L-Iduronidase-Carrying Retrovirus in Canine Mucopolysaccharidosis Type I: Infection of Multiple Tissues and Neonatal Gene Expression. Human Gene Therapy, 2002, 13, 1809-1820.	2.7	34
147	Improving Gene Therapy Efficiency through the Enrichment of Human Hematopoietic Stem Cells. Molecular Therapy, 2017, 25, 2163-2175.	8.2	34
148	High-Resolution Analysis of Cytosine Methylation in the 5′ Long Terminal Repeat of Retroviral Vectors. Human Gene Therapy, 1998, 9, 2321-2330.	2.7	33
149	Primary Immune Deficiency Treatment Consortium (PIDTC) update. Journal of Allergy and Clinical Immunology, 2016, 138, 375-385.	2.9	33
150	Gene Therapy for Sickle Cell Disease <i>:</i> A Lentiviral Vector Comparison Study. Human Gene Therapy, 2018, 29, 1153-1166.	2.7	33
151	Gene Therapy for Adenosine Deaminase Deficiency. Annual Review of Medicine, 2000, 51, 33-47.	12.2	32
152	Lentiviral vectors ready for prime-time. Nature Biotechnology, 2007, 25, 65-66.	17.5	32
153	Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+ cells. Experimental Hematology, 2015, 43, 346-351.	0.4	32
154	Scaffold attachment region–containing retrovirus vectors improve long-term proviral expression after transplantation of GFP-modified CD34+ baboon repopulating cells. Blood, 2003, 102, 3117-3119.	1.4	31
155	Effective Suicide Gene Therapy for Leukemia in a Model of Insertional Oncogenesis in Mice. Molecular Therapy, 2007, 15, 183-192.	8.2	31
156	Retrovirus-mediated transfer of the human α- L-iduronidase cDNA into human hematopoietic progenitor cells leads to correction in trans of Hurler fibroblasts. Gene Therapy, 1997, 4, 1150-1159.	4.5	30
157	HSV-sr39TK Positron Emission Tomography and Suicide Gene Elimination of Human Hematopoietic Stem Cells and Their Progeny in Humanized Mice. Cancer Research, 2014, 74, 5173-5183.	0.9	30
158	Clinical and genetic heterogeneity in Omenn syndrome and severe combined immune deficiency. Pediatric Transplantation, 2009, 13, 244-250.	1.0	29
159	Specific and Stable Gene Transfer to Human Embryonic Stem Cells Using Pseudotyped Lentiviral Vectors. Stem Cells and Development, 2006, 15, 109-117.	2.1	28
160	Gene therapy for childhood immunological diseases. Bone Marrow Transplantation, 2008, 41, 199-205.	2.4	28
161	Foamy Virus Vectors Expressing Anti-HIV Transgenes Efficiently Block HIV-1 Replication. Molecular Therapy, 2008, 16, 46-51.	8.2	28
162	T cell dynamics and response of the microbiota after gene therapy to treat X-linked severe combined immunodeficiency. Genome Medicine, 2018, 10, 70.	8.2	28

#	Article	IF	CITATIONS
163	Human CLEC9A antibodies deliver NY-ESO-1 antigen to CD141 ⁺ dendritic cells to activate na¬ve and memory NY-ESO-1-specific CD8 ⁺ T cells. , 2020, 8, e000691.		28
164	Long-term outcomes after gene therapy for adenosine deaminase severe combined immune deficiency. Blood, 2021, 138, 1304-1316.	1.4	28
165	Expression of human Wiskott–Aldrich syndrome protein in patients' cells leads to partial correction of a phenotypic abnormality of cell surface glycoproteins. Gene Therapy, 2000, 7, 314-320.	4.5	27
166	Association of prostate-specific membrane antigen with caveolin-1 and its caveolae-dependent internalization in microvascular endothelial cells: Implications for targeting to tumor vasculature. Microvascular Research, 2006, 72, 54-61.	2.5	27
167	Cytoreductive conditioning intensity predicts clonal diversity in ADA-SCID retroviral gene therapy patients. Blood, 2017, 129, 2624-2635.	1.4	27
168	Gene therapy for blood diseases. Current Opinion in Biotechnology, 2019, 60, 39-45.	6.6	27
169	Improved Titer and Gene Transfer by Lentiviral Vectors Using Novel, Small Î ² -Globin Locus Control Region Elements. Molecular Therapy, 2020, 28, 328-340.	8.2	27
170	Expression of Hammerhead Ribozymes by Retroviral Vectors to Inhibit HIV-1 Replication: Comparison of RNA Levels and Viral Inhibition. Oligonucleotides, 1996, 6, 17-24.	4.3	26
171	Busulfan and Cyclophosphamide as a Conditioning Regimen for Pediatric Acute Lymphoblastic Leukemia Patients Undergoing Bone Marrow Transplantation. Journal of Pediatric Hematology/Oncology, 2004, 26, 91-97.	0.6	26
172	Enrichment of Human Hematopoietic Stem/Progenitor Cells Facilitates Transduction for Stem Cell Gene Therapy. Stem Cells, 2015, 33, 1532-1542.	3.2	26
173	Characterization of Gene Alterations following Editing of the β-Globin Gene Locus in Hematopoietic Stem/Progenitor Cells. Molecular Therapy, 2018, 26, 468-479.	8.2	26
174	Outcomes following treatment for ADA-deficient severe combined immunodeficiency: a report from the PIDTC. Blood, 2022, 140, 685-705.	1.4	26
175	Supramolecular nanosubstrate–mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies. Science Advances, 2020, 6, .	10.3	25
176	Simultaneous Use of Two Retroviral Vectors in Human Gene Marking Trials: Feasibility and Potential Applications. Human Gene Therapy, 1992, 3, 619-624.	2.7	24
177	Neonatal bone marrow transplantation of ADA-deficient SCID mice results in immunologic reconstitution despite low levels of engraftment and an absence of selective donor T lymphoid expansion. Blood, 2008, 111, 5745-5754.	1.4	24
178	Expression of Biologically Active Human Factor IX in Human Hematopoietic Cells after Retroviral Vector-Mediated Gene Transduction. Human Gene Therapy, 1995, 6, 873-880.	2.7	23
179	Effects of busulfan dose escalation on engraftment of infant rhesus monkey hematopoietic stem cells after gene marking by a lentiviral vector. Experimental Hematology, 2006, 34, 369-381.	0.4	23
180	Gene Therapy Through Autologous Transplantation of Gene-Modified Hematopoietic Stem Cells. Biology of Blood and Marrow Transplantation, 2013, 19, S64-S69.	2.0	23

#	Article	IF	CITATIONS
181	Historical Perspective on the Current Renaissance for Hematopoietic Stem Cell Gene Therapy. Hematology/Oncology Clinics of North America, 2017, 31, 721-735.	2.2	23
182	Suitability of Bone Marrow from HIV-1-Infected Donors for Retrovirus-Mediated Gene Transfer. Human Gene Therapy, 1997, 8, 301-311.	2.7	22
183	Stem cell directed gene therapy. Frontiers in Bioscience - Landmark, 1999, 4, e26.	3.0	22
184	Nonmyeloablative Conditioning Regimen to Increase Engraftment of Gene-modified Hematopoietic Stem Cells in Young Rhesus Monkeys. Molecular Therapy, 2012, 20, 1033-1045.	8.2	22
185	High-level correction of the sickle mutation is amplified inÂvivo during erythroid differentiation. IScience, 2022, 25, 104374.	4.1	22
186	Requirement for NK Cells in CD40 Ligand-Mediated Rejection of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Cells. Journal of Immunology, 2002, 168, 73-80.	0.8	20
187	Efficient Characterization of Retroâ€; Lentiâ€; and Foamyvectorâ€Transduced Cell Populations by Highâ€Accuracy Insertion Site Sequencing. Annals of the New York Academy of Sciences, 2003, 996, 112-121.	3.8	20
188	Long-Term Neurocognitive Function of Pediatric Patients with Severe Combined Immune Deficiency (SCID): Pre- and Post-Hematopoietic Stem Cell Transplant (HSCT). Journal of Clinical Immunology, 2009, 29, 231-237.	3.8	20
189	A Tale of Two SCIDs. Science Translational Medicine, 2011, 3, 97ps36.	12.4	19
190	Adenosine Deaminase (ADA)–Deficient Severe Combined Immune Deficiency (SCID) in the US Immunodeficiency Network (USIDNet) Registry. Journal of Clinical Immunology, 2020, 40, 1124-1131.	3.8	19
191	BTK mediated apoptosis, a possible mechanism for failure to generate high titer retroviral producer clones. Journal of Gene Medicine, 2000, 2, 204-209.	2.8	18
192	Kinetics of Fluorescence Expression in Nonhuman Primates Transplanted with GFP Retrovirus-Modified CD34 Cells. Molecular Therapy, 2002, 6, 83-90.	8.2	18
193	Gene therapy for newborns. FASEB Journal, 1997, 11, 635-639.	0.5	17
194	Second hematopoietic stem cell transplantation in pediatric patients: Overall survival and long-term follow-up. Biology of Blood and Marrow Transplantation, 2002, 8, 221-228.	2.0	17
195	Gene Therapy for Pediatric AIDS. Annals of the New York Academy of Sciences, 2000, 918, 318-329.	3.8	17
196	Expansion of multipotent and lymphoid-committed human progenitors through intracellular dimerization of Mpl. Blood, 2008, 111, 4064-4074.	1.4	17
197	The human ankyrin 1 promoter insulator sustains gene expression in a β-globin lentiviral vector in hematopoietic stem cells. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15012.	4.1	17
198	Optimizing Integration and Expression of Transgenic Bruton's Tyrosine Kinase for CRISPR-Cas9-Mediated Gene Editing of X-Linked Agammaglobulinemia. CRISPR Journal, 2021, 4, 191-206.	2.9	17

#	Article	IF	CITATIONS
199	Inhibition of HIV-1 Replication Using a Mutated tRNALys-3 Primer. Journal of Biological Chemistry, 1997, 272, 14523-14531.	3.4	16
200	USE OF LENTIVIRAL VECTORS TO INDUCE LONG-TERM TOLERANCE TO GAL+ HEART GRAFTS. Transplantation, 2004, 77, 1748-1754.	1.0	16
201	Pre-clinical Development of a Lentiviral Vector Expressing the Anti-sickling βAS3 Globin for Gene Therapy for Sickle Cell Disease. Molecular Therapy - Methods and Clinical Development, 2018, 11, 167-179.	4.1	16
202	Use of a retroviral vector with an internal opsin promoter to direct gene expression to retinal photoreceptor cells. Current Eye Research, 1996, 15, 833-844.	1.5	15
203	Intrakines—Evidence for a Trans-Cellular Mechanism of Action. Molecular Therapy, 2000, 1, 165-170.	8.2	15
204	Tolerance induction by lentiviral gene therapy with a nonmyeloablative regimen. Blood, 2006, 107, 2286-2293.	1.4	15
205	Human Lymphoid Development in the Absence of Common Î ³ -Chain Receptor Signaling. Journal of Immunology, 2014, 192, 5050-5058.	0.8	15
206	Dissecting the Mechanism of Histone Deacetylase Inhibitors to Enhance the Activity of Zinc Finger Nucleases Delivered by Integrase-Defective Lentiviral Vectors. Human Gene Therapy, 2014, 25, 599-608.	2.7	15
207	β-Globin Lentiviral Vectors Have Reduced Titers due to Incomplete Vector RNA Genomes and Lowered Virion Production. Stem Cell Reports, 2021, 16, 198-211.	4.8	15
208	Safe and Effective <i>In Vivo</i> Targeting and Gene Editing in Hematopoietic Stem Cells: Strategies for Accelerating Development. Human Gene Therapy, 2021, 32, 31-42.	2.7	15
209	Gene therapy to inhibit xenoantibody production using lentiviral vectors in non-human primates. Gene Therapy, 2007, 14, 49-57.	4.5	14
210	HIV eradication—from Berlin to Boston. Nature Biotechnology, 2014, 32, 315-316.	17.5	14
211	Preclinical studies for a phase 1 clinical trial of autologous hematopoietic stem cell gene therapy for sickle cell disease. Cytotherapy, 2017, 19, 1096-1112.	0.7	14
212	Gene transfer into human umbilical cord blood-derived CD34+ cells by particle-mediated gene transfer. Gene Therapy, 1998, 5, 692-699.	4.5	13
213	Tissue-specific restriction of cyclophilin A-independent HIV-1- and SIV-derived lentiviral vectors. Gene Therapy, 2008, 15, 1079-1089.	4.5	13
214	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	4.1	13
215	Preclinical Studies for Sickle Cell Disease Gene Therapy Using Bone Marrow CD34+ Cells Modified with a βAS3-Globin Lentiviral Vector. Blood, 2011, 118, 3119-3119.	1.4	13
216	Gene Therapy: Charting a Future Course—Summary of a National Institutes of Health Workshop, April 12, 2013. Human Gene Therapy, 2014, 25, 488-497.	2.7	12

#	Article	IF	CITATIONS
217	Immunotherapy against murine leukemia. Leukemia, 1998, 12, 401-405.	7.2	11
218	Simian Immunodeficiency Virus Infection of Hematopoietic Stem Cells and Bone Marrow Stromal Cells. Journal of Acquired Immune Deficiency Syndromes (1999), 2004, 36, 553-561.	2.1	11
219	Expression from second-generation feline immunodeficiency virus vectors is impaired in human hematopoietic cells. Molecular Therapy, 2002, 6, 645-52.	8.2	11
220	Gene Therapy for XSCID: The First Success of Gene Therapy. Pediatric Research, 2000, 48, 578-578.	2.3	10
221	Impulse oscillometry identifies peripheral airway dysfunction in children with adenosine deaminase deficiency. Orphanet Journal of Rare Diseases, 2015, 10, 159.	2.7	10
222	A Reduced-Toxicity Regimen Is Associated with Durable Engraftment and Clinical Cure of Nonmalignant Genetic Diseases among Children Undergoing Blood and Marrow Transplantation with an HLA-Matched Related Donor. Biology of Blood and Marrow Transplantation, 2015, 21, 440-444.	2.0	10
223	Genetic Tagging During Human Mesoderm Differentiation Reveals Tripotent Lateral Plate Mesodermal Progenitors. Stem Cells, 2016, 34, 1239-1250.	3.2	10
224	Dosing and Re-Administration of Lentiviral Vector for InÂVivo Gene Therapy in Rhesus Monkeys and ADA-Deficient Mice. Molecular Therapy - Methods and Clinical Development, 2020, 16, 78-93.	4.1	10
225	Erythropoiesis from Human Embryonic Stem Cells Through Erythropoietin-Independent AKT Signaling. Stem Cells, 2014, 32, 1503-1514.	3.2	9
226	Unrelated donor hematopoietic stem cell transplantation for the treatment of nonâ€malignant genetic diseases: An alemtuzumab based regimen is associated with cure of clinical disease; earlier clearance of alemtuzumab may be associated with graft rejection. American Journal of Hematology, 2015, 90, 1021-1026.	4.1	9
227	IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System. Clinical Cancer Research, 2019, 25, 1000-1011.	7.0	9
228	Creating New β-Globin-Expressing Lentiviral Vectors by High-Resolution Mapping of Locus Control Region Enhancer Sequences. Molecular Therapy - Methods and Clinical Development, 2020, 17, 999-1013.	4.1	9
229	Expression of Coagulation Factor IX (Christmas Factor) in Human Hepatoma (HepG2) Cell Cultures after Retroviral Vector-Mediated Transfer. Journal of Pediatric Hematology/Oncology, 1993, 15, 196-203.	0.6	8
230	GENE THERAPY FOR CONGENITAL IMMUNODEFICIENCY DISEASES. Immunology and Allergy Clinics of North America, 1996, 16, 453-476.	1.9	8
231	Pre―and postâ€natal treatment of hemophagocytic lymphohistiocytosis. Pediatric Blood and Cancer, 2009, 52, 139-142.	1.5	8
232	Novel Pathways to Erythropoiesis Induced by Dimerization of Intracellular C-Mpl in Human Hematopoietic Progenitors. Stem Cells, 2012, 30, 697-708.	3.2	8
233	Gene therapy outpaces haplo for SCID-X1. Blood, 2015, 125, 3521-3522.	1.4	8
234	C-8. Immunological and Metabolic Correction After Lentiviral Vector Gene Therapy for ADA Deficiency. Molecular Therapy, 2015, 23, S102-S103.	8.2	8

#	Article	IF	CITATIONS
235	Delivery of Genome Editing Reagents to Hematopoietic Stem/Progenitor Cells. Current Protocols in Stem Cell Biology, 2016, 36, 5B.4.1-5B.4.10.	3.0	8
236	Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization. Gene Therapy, 2018, 25, 454-472.	4.5	8
237	Busulfan Pharmacokinetics in Adenosine Deaminase-Deficient Severe Combined Immunodeficiency Gene Therapy. Biology of Blood and Marrow Transplantation, 2020, 26, 1819-1827.	2.0	8
238	Overview of the current status of gene therapy for primary immune deficiencies (PIDs). Journal of Allergy and Clinical Immunology, 2020, 146, 229-233.	2.9	8
239	Global and Local Manipulation of DNA Repair Mechanisms to Alter Site-Specific Gene Editing Outcomes in Hematopoietic Stem Cells. Frontiers in Genome Editing, 2020, 2, 601541.	5.2	8
240	Regional Gene Therapy with Transduced Human Cells: The Influence of "Cell Dose―on Bone Repair. Tissue Engineering - Part A, 2021, 27, 1422-1433.	3.1	8
241	A Phase 1/2 Study of Lentiviral-Mediated <i>Ex-Vivo</i> Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Results from Phase 1. Blood, 2020, 136, 15-15.	1.4	8
242	Improved lentiviral vector titers from a multi-gene knockout packaging line. Molecular Therapy - Oncolytics, 2021, 23, 582-592.	4.4	8
243	Infection of human hematopoietic progenitor cells using a retroviral vector with a xenotropic pseudotype. Biochemical and Biophysical Research Communications, 1988, 151, 201-206.	2.1	7
244	Adenosine Deaminase Gene Therapy Protocol Revisited. Molecular Therapy, 2002, 5, 96-97.	8.2	7
245	Gene Therapy for Inborn and Acquired Immune Deficiency Disorders. Acta Haematologica, 2003, 110, 60-70.	1.4	7
246	Lentiviral vectors with amplified \hat{l}^2 cell-specific gene expression. Gene Therapy, 2009, 16, 998-1008.	4.5	7
247	Effects of Vector Backbone and Pseudotype on Lentiviral Vector-mediated Gene Transfer: Studies in Infant ADA-Deficient Mice and Rhesus Monkeys. Molecular Therapy, 2014, 22, 1803-1816.	8.2	6
248	Regional gene therapy for bone healing using a <scp>3D</scp> printed scaffold in a rat femoral defect model. Journal of Biomedical Materials Research - Part A, 2021, 109, 2346-2356.	4.0	6
249	Haematopoietic stem cells for gene therapy. , 1997, , 447-462.		5
250	Effects of the negative control region on expression from retroviral LTR. Molecular Therapy, 2003, 7, 438-440.	8.2	5
251	Recombinant murine interleukin-12 elicits potent antileukemic immune responses in a murine model of philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer Gene Therapy, 2005, 12, 818-824.	4.6	5
252	Perspectives on Gene Therapy for Immune Deficiencies. Biology of Blood and Marrow Transplantation, 2005, 11, 972-976.	2.0	5

#	Article	IF	CITATIONS
253	Preferential association of prostate cancer cells expressing prostate specific membrane antigen to bone marrow matrix. International Journal of Oncology, 0, , .	3.3	5
254	Eliminating SCID row: new approaches to SCID. Hematology American Society of Hematology Education Program, 2014, 2014, 475-480.	2.5	5
255	Putative Immunogenicity Expression Profiling Using Human Pluripotent Stem Cells and Derivatives. Stem Cells Translational Medicine, 2015, 4, 136-145.	3.3	5
256	Chemistry, manufacturing and controls for gene modified hematopoietic stem cells. Cytotherapy, 2019, 21, 358-366.	0.7	5
257	AT1R Activating Autoantibodies in Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2020, 26, 2061-2067.	2.0	5
258	A peptidyl derivative of [3H]aniline as a sensitive, stable, protease substrate. Analytical Biochemistry, 1979, 97, 269-276.	2.4	4
259	Tracheal aspirate examination for Pneumocystis carinii cysts as a guide to therapy in pneumocystis pneumonia. Journal of Pediatrics, 1983, 102, 881-883.	1.8	4
260	Short-course amphotericin B therapy for isolated candiduria in children. Journal of Pediatrics, 1987, 110, 310-313.	1.8	4
261	Letter to the editors ofNaturefrom the American Society of Gene Therapy (ASGT) and the European Society of Gene Therapy (ESGT). Journal of Gene Medicine, 2003, 5, 641-641.	2.8	4
262	Preloading Potential of Retroviral Vectors Is Packaging Cell Clone Dependent and Centrifugation onto CH-296 Ensures Highest Transduction Efficiency. Human Gene Therapy, 2009, 20, 337-349.	2.7	4
263	Regulated Expansion of Human Pancreatic β-Cells. Molecular Therapy, 2010, 18, 1389-1396.	8.2	4
264	Stem cell directed gene therapy. Frontiers in Bioscience - Landmark, 1999, 4, e26-33.	3.0	3
265	Amendment to Clinical Research Project Project 90-C-195. Human Gene Therapy, 1999, 10, 477-488.	2.7	3
266	Hematopoietic stem cell transplantation for severe combined immune deficiency. Current Allergy and Asthma Reports, 2001, 1, 416-420.	5.3	3
267	Envelope, please. And the award goes to…. Blood, 2014, 124, 1203-1204.	1.4	3
268	Somatic Gene Therapy for X-Linked Severe Combined Immunodeficiency Using a Self-Inactivating Modified Gammaretroviral Vector Results in An Improved Preclinical Safety Profile and Early Clinical Efficacy in a Human Patient. Blood, 2011, 118, 164-164.	1.4	3
269	Granulocyte Transfusions in Patients with Chronic Granulomatous Disease Undergoing Hematopoietic Cell Transplantation or Gene Therapy. Journal of Clinical Immunology, 2022, 42, 1026-1035.	3.8	3
270	BONE MARROW TRANSPLANTATION FOR METABOLIC DISEASES. Immunology and Allergy Clinics of North America, 1996, 16, 429-438.	1.9	2

#	Article	IF	CITATIONS
271	GENE THERAPY FOR T-CELL IMMUNODEFICIENCIES. Immunology and Allergy Clinics of North America, 2000, 20, 221-235.	1.9	2
272	Neurocognitive Function of Patients with Severe Combined Immunodeficiency. Immunology and Allergy Clinics of North America, 2010, 30, 143-151.	1.9	2
273	Gene therapy: WAS (not) just for kids. Blood, 2017, 130, 1278-1279.	1.4	2
274	Laser Tweezers Raman Spectroscopy As a Novel Red Blood Cell Functional Assay for Sickle Cell Disease. Blood, 2011, 118, 4847-4847.	1.4	2
275	Expression from Second-Generation Feline Immunodeficiency Virus Vectors Is Impaired in Human Hematopoietic Cells. Molecular Therapy, 2002, 6, 645-652.	8.2	1
276	Human Hematopoietic Cell Culture, Transduction, and Analyses. Current Protocols in Human Genetics, 2008, 56, Unit 13.7.	3.5	1
277	Guidance for Developing Phase II Cell Therapy Trial Proposals for Consideration by the Blood and Marrow Transplant Clinical Trials Network. Biology of Blood and Marrow Transplantation, 2011, 17, 192-196.	2.0	1
278	Gene delivery using AAV8 inÂvivo for disease stabilization in a bimodal gene therapy approach for the treatment of ADA-deficient SCID. Molecular Therapy - Methods and Clinical Development, 2021, 20, 765-778.	4.1	1
279	Clinical Trials of Gene Marking and Gene Therapy Using Hematopoietic Stem Cells. , 0, , 118-129.		1
280	Zinc Finger Nucleases Targeting The β-Globin Locus Drive Efficient Correction Of The Sickle Mutation In CD34+ Cells. Blood, 2013, 122, 2904-2904.	1.4	1
281	Human Progenitor and Stem Cell Expansion through Selective, Reversible Cytokine Receptor Signaling Blood, 2005, 106, 31-31.	1.4	1
282	Improved SARS-CoV-2 Spike Glycoproteins for Pseudotyping Lentiviral Vectors. Frontiers in Virology, 2021, 1, .	1.4	1
283	Human Hematopoietic Cell Culture, Transduction, and Analyses. Current Protocols in Human Genetics, 1997, 14, 13.7.1.	3.5	0
284	Gene Therapy for Primary Immune Deficiencies. , 2014, , 1043-1058.		0
285	Hematopoietic Stem Cell Therapy. , 2016, , 152-159.e3.		0
286	Gene Therapy. Hematology/Oncology Clinics of North America, 2017, 31, xiii-xiv.	2.2	0
287	Gene Therapy for Primary Immune Deficiency Diseases. , 2019, , 1155-1164.e1.		0
288	Gene therapy for primary immune deficiencies. , 2020, , 1215-1228.		0

Gene therapy for primary immune deficiencies. , 2020, , 1215-1228. 288

#	Article	IF	CITATIONS
289	Normal IgH Repertoire Diversity in an Infant with ADA Deficiency After Gene Therapy. Journal of Clinical Immunology, 2021, 41, 1597-1606.	3.8	0
290	Campath 1H Versus ATG for the Prophylaxis of Graft Versus Host Disease Does Not Increase the Risk of Relapse or Infections Blood, 2006, 108, 2888-2888.	1.4	0
291	In Vivo Biosafety Model To Assess Risk of Adverse Events from Retroviral and Lentiviral Vectors Blood, 2007, 110, 2595-2595.	1.4	0
292	Hematopoietic Stem Cell Transplantation and Gene Therapy for Primary Immune Deficiency Diseases. , 2010, , 223-231.		0
293	CD19 Fc-Fusion Protein for Detection of Cells Expressing Anti-CD19 Chimeric Antigen Receptors Blood, 2010, 116, 3756-3756.	1.4	0
294	Gene Transfer to Hematopoietic Stem/Progenitor Cells As a Novel Approach for Immunotherapy Against B-Lineage Malignancies: In Vivo Xenograft Model,. Blood, 2011, 118, 4168-4168.	1.4	0
295	A Pre-Clinical Model Of Hematopoietic Stem Cell Based Immunotherapy For Cancer Utilizing The NY-ESO-1 T-Cell Receptor and sr39TK PET Reporter / Suicide Gene. Blood, 2013, 122, 2020-2020.	1.4	0
296	Preservation of Gene Edited Hematopoietic Stem Cells By Transient Overexpression of BCL-2 mRNA. Blood, 2016, 128, 3636-3636.	1.4	0