
Senena Corbalan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8062390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The binding of different model membranes with PKCε C2 domain is not dependent on membrane curvature but affects the sequence of events during unfolding. Archives of Biochemistry and Biophysics, 2021, 705, 108910.	1.4	2
2	PKCÎμ controls the fusion of secretory vesicles in mast cells in a phosphatidic acid-dependent mode. International Journal of Biological Macromolecules, 2021, 185, 377-389.	3.6	2
3	KIR+ CD8+ T Lymphocytes in Cancer Immunosurveillance and Patient Survival: Gene Expression Profiling. Cancers, 2020, 12, 2991.	1.7	9
4	Interaction of Vitamin K ₁ and Vitamin K ₂ with Dimyristoylphosphatidylcholine and Their Location in the Membrane. Langmuir, 2020, 36, 1062-1073.	1.6	7
5	Phosphatidylinositol Monophosphates Regulate Optimal Vav1 Signaling Output. Cells, 2019, 8, 1649.	1.8	8
6	Phenolic Group of α-Tocopherol Anchors at the Lipid–Water Interface of Fully Saturated Membranes. Langmuir, 2018, 34, 3336-3348.	1.6	14
7	Crystal structure of the C-terminal four-helix bundle of the potassium channel KCa3.1. PLoS ONE, 2018, 13, e0199942.	1.1	6
8	Anticancer Agent Edelfosine Exhibits a High Affinity for Cholesterol and Disorganizes Liquid-Ordered Membrane Structures. Langmuir, 2018, 34, 8333-8346.	1.6	18
9	The vertical location of α-tocopherol in phosphatidylcholine membranes is not altered as a function of the degree of unsaturation of the fatty acyl chains. Physical Chemistry Chemical Physics, 2017, 19, 6731-6742.	1.3	22
10	Structural characterization of the Rabphilin-3A–SNAP25 interaction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5343-E5351.	3.3	37
11	X-ray diffraction and NMR data for the study of the location of idebenone and idebenol in model membranes. Data in Brief, 2016, 7, 981-989.	0.5	0
12	Both idebenone and idebenol are localized near the lipid–water interface of the membrane and increase its fluidity. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1071-1081.	1.4	12
13	Capsaicin Fluidifies the Membrane and Localizes Itself near the Lipid–Water Interface. ACS Chemical Neuroscience, 2015, 6, 1741-1750.	1.7	20
14	Classical protein kinases C are regulated by concerted interaction with lipids: the importance of phosphatidylinositol-4,5-bisphosphate. Biophysical Reviews, 2014, 6, 3-14.	1.5	16
15	Signaling through C2 domains: More than one lipid target. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1536-1547.	1.4	189
16	The C1B domains of novel PKCε and PKCη have a higher membrane binding affinity than those of the also novel PKCδ and PKCÎ,. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1898-1909.	1.4	5
17	Phosphatidylinositol-4,5-Bisphosphate Enhances Anionic Lipid Demixing by the C2 Domain of PKCα. PLoS ONE, 2014, 9, e95973.	1.1	5
18	Membrane docking mode of the C2 domain of PKCε: An infrared spectroscopy and FRET study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 552-560.	1.4	2

#	Article	IF	CITATIONS
19	Structural insights into the Ca ²⁺ and Pl(4,5)P ₂ binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20503-20508.	3.3	64
20	Phosphatidylinositol 4,5-Bisphosphate Decreases the Concentration of Ca2+, Phosphatidylserine and Diacylglycerol Required for Protein Kinase C α to Reach Maximum Activity. PLoS ONE, 2013, 8, e69041.	1.1	12
21	Quartz crystal microbalance with dissipation monitoring and the real-time study of biological systems and macromolecules at interfaces. Biomedical Spectroscopy and Imaging, 2012, 1, 325-338.	1.2	1
22	The membrane binding kinetics of full-length PKCα is determined by membrane lipid composition. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1434-1442.	1.2	11
23	ATP Enhances Neuronal Differentiation of PC12 Cells by Activating PKCα Interactions with Cytoskeletal Proteins. Journal of Proteome Research, 2011, 10, 529-540.	1.8	11
24	Curcumin modulates PKCα activity by a membrane-dependent effect. Archives of Biochemistry and Biophysics, 2011, 513, 36-41.	1.4	11
25	Membrane docking of the C2 domain from protein kinase Cα as seen by polarized ATR-IR. The role of PIP2. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 684-695.	1.4	19
26	The C2 domains of classical and novel PKCs as versatile decoders of membrane signals. BioFactors, 2010, 36, 1-7.	2.6	25
27	Membrane‧urface Anchoring of Charged Diacylglycerolâ€Lactones Correlates with Biological Activities. ChemBioChem, 2010, 11, 2003-2009.	1.3	2
28	Inside Cover: Membrane-Surface Anchoring of Charged Diacylglycerol-Lactones Correlates with Biological Activities (ChemBioChem 14/2010). ChemBioChem, 2010, 11, 1926-1926.	1.3	0
29	Curcumin Disorders 1,2-Dipalmitoyl- <i>sn-</i> glycero-3-phosphocholine Membranes and Favors the Formation of Nonlamellar Structures by 1,2-Dielaidoyl- <i>sn</i> glycero-3-phosphoethanolamine. Journal of Physical Chemistry B, 2010, 114, 9778-9786.	1.2	45
30	Structural and mechanistic insights into the association of PKCα-C2 domain to PtdIns(4,5)P ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6603-6607.	3.3	99
31	The interaction of the Bax C-terminal domain with membranes is influenced by the presence of negatively charged phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1924-1932.	1.4	10
32	A Comparison of the Membrane Binding Properties of C1B Domains of PKCγ, PKCδ, and PKCɛ. Biophysical Journal, 2009, 96, 3638-3647.	0.2	28
33	Edelfosine Is Incorporated into Rafts and Alters Their Organization. Journal of Physical Chemistry B, 2008, 112, 11643-11654.	1.2	70
34	The interaction of the Bax C-terminal domain with negatively charged lipids modifies the secondary structure and changes its way of insertion into membranes. Journal of Structural Biology, 2008, 164, 146-152.	1.3	18
35	The PtdIns(4,5)P2 Ligand Itself Influences the Localization of PKCα in the Plasma Membrane of Intact Living Cells. Journal of Molecular Biology, 2008, 377, 1038-1052.	2.0	34
36	Redox State of Coenzyme Q ₁₀ Determines Its Membrane Localization. Journal of Physical Chemistry B, 2008, 112, 12696-12702.	1.2	27

SENENA CORBALAN

#	Article	IF	CITATIONS
37	The C2 domains of classical/conventional PKCs are specific PtdIns(4,5) <i>P</i> 2-sensing domains. Biochemical Society Transactions, 2007, 35, 1046-1048.	1.6	20
38	Interaction of the C-terminal domain of Bcl-2 family proteins with model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2931-2939.	1.4	16
39	The C2 Domains of Classical PKCs are Specific PtdIns(4,5)P2-sensing Domains with Different Affinities for Membrane Binding. Journal of Molecular Biology, 2007, 371, 608-621.	2.0	51
40	Interaction of the C2 Domain from Protein Kinase Cε with Model Membranesâ€. Biochemistry, 2007, 46, 3183-3192.	1.2	13
41	Diacylglycerols, multivalent membrane modulators. Chemistry and Physics of Lipids, 2007, 148, 1-25.	1.5	72
42	Protein kinase C regulatory domains: The art of decoding many different signals in membranes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 633-654.	1.2	108
43	Molecular Mechanisms of PKCα localization and Activation by Arachidonic Acid. The C2 Domain also Plays a Role. Journal of Molecular Biology, 2006, 357, 1105-1120.	2.0	33
44	The C2 Domain of PKCα Is a Ca2+-dependent PtdIns(4,5)P2 Sensing Domain: A New Insight into an Old Pathway. Journal of Molecular Biology, 2006, 362, 901-914.	2.0	57
45	Structural study of the catalytic domain of PKCzeta using infrared spectroscopy and two-dimensional infrared correlation spectroscopy. FEBS Journal, 2006, 273, 3273-3286.	2.2	10
46	Effects of the anti-neoplastic agent ET-18-OCH3 and some analogs on the biophysical properties of model membranes. International Journal of Pharmaceutics, 2006, 318, 28-40.	2.6	12
47	The ATP-dependent Membrane Localization of Protein Kinase Cα Is Regulated by Ca2+ Influx and Phosphatidylinositol 4,5-Bisphosphate in Differentiated PC12 Cells. Molecular Biology of the Cell, 2005, 16, 2848-2861.	0.9	43
48	Modulation of the Membrane Orientation and Secondary Structure of the C-Terminal Domains of Bak and Bcl-2 by Lipidsâ€. Biochemistry, 2005, 44, 10796-10809.	1.2	13
49	Retinoic Acid as a Modulator of the Activity of Protein Kinase Cα. Biochemistry, 2005, 44, 11353-11360.	1.2	17
50	A comparative study of the effect of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine and some homologous compounds on PKCα and PKCÉ›. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1687, 110-119.	1.2	6
51	Calorimetric Study of the Interaction of the C2 Domains of Classical Protein Kinase C Isoenzymes with Ca2+and Phospholipidsâ€. Biochemistry, 2004, 43, 11727-11739.	1.2	41
52	Role of the Lysine-rich Cluster of the C2 Domain in the Phosphatidylserine-dependent Activation of PKCα. Journal of Molecular Biology, 2004, 335, 1117-1129.	2.0	38
53	An Infrared Spectroscopic Study of the Secondary Structure of Protein Kinase Cα and Its Thermal Denaturationâ€. Biochemistry, 2004, 43, 2332-2344.	1.2	23
54	Diacylglycerols as activators of protein kinase C (Review). Molecular Membrane Biology, 2004, 21, 339-349.	2.0	18

SENENA CORBALAN

#	Article	IF	CITATIONS
55	Retinoic Acid Binds to the C2-Domain of Protein Kinase Cαâ€. Biochemistry, 2003, 42, 8774-8779.	1.2	76
56	Characterization of the Membrane Binding Mode of the C2 Domain of PKCεâ€. Biochemistry, 2003, 42, 11661-11668.	1.2	60
57	Structural Study of the C2 Domains of the Classical PKC Isoenzymes Using Infrared Spectroscopy and Two-Dimensional Infrared Correlation Spectroscopyâ€. Biochemistry, 2003, 42, 11669-11681.	1.2	33
58	C2 Domain of Protein Kinase Cα:  Elucidation of the Membrane Docking Surface by Site-Directed Fluorescence and Spin Labeling. Biochemistry, 2003, 42, 1254-1265.	1.2	91
59	The Simultaneous Production of Phosphatidic Acid and Diacylglycerol Is Essential for the Translocation of Protein Kinase Clµ to the Plasma Membrane in RBL-2H3 Cells. Molecular Biology of the Cell, 2003, 14, 4885-4895.	0.9	81
60	A New Phosphatidylinositol 4,5-Bisphosphate-binding Site Located in the C2 Domain of Protein Kinase Cα. Journal of Biological Chemistry, 2003, 278, 4972-4980.	1.6	92
61	Role of the Ca2+/Phosphatidylserine Binding Region of the C2 Domain in the Translocation of Protein Kinase Cα to the Plasma Membrane. Journal of Biological Chemistry, 2003, 278, 10282-10290.	1.6	60
62	Structural Characterization of the C2 Domains of Classical Isozymes of Protein Kinase C and Novel Protein Kinase Clµ by using Infrared Spectroscopy. Spectroscopy, 2003, 17, 399-416.	0.8	2
63	C2 Domains of Protein Kinase C Isoforms α, β, and γ:  Activation Parameters and Calcium Stoichiometries of the Membrane-Bound State. Biochemistry, 2002, 41, 11411-11424.	1.2	102
64	Additional Binding Sites for Anionic Phospholipids and Calcium Ions in the Crystal Structures of Complexes of the C2 Domain of Protein Kinase Cα. Journal of Molecular Biology, 2002, 320, 277-291.	2.0	74
65	The Structure of the C-Terminal Domain of the Pro-Apoptotic Protein Bak and Its Interaction with Model Membranes. Biophysical Journal, 2002, 82, 233-243.	0.2	22
66	Structure of the C2 domain from novel protein kinase Cïμ. A membrane binding model for Ca2+-independent C2 domains. Journal of Molecular Biology, 2001, 311, 837-849.	2.0	97
67	Conformation of the C-Terminal Domain of the Pro-Apoptotic Protein Bax and Mutants and Its Interaction with Membranesâ€. Biochemistry, 2001, 40, 9983-9992.	1.2	36
68	Identification of the Phosphatidylserine Binding Site in the C2 Domain that Is Important for PKCα Activation and in Vivo Cell Localization. Biochemistry, 2001, 40, 13898-13905.	1.2	59
69	Activation of Protein Kinase C α by Lipid Mixtures Containing Different Proportions of Diacylglycerolsâ€. Biochemistry, 2001, 40, 15038-15046.	1.2	9
70	Structural characterization of the C2 domain of novel protein kinase Cε. FEBS Journal, 2001, 268, 1107-1117.	0.2	21
71	Correlation between the effect of the anti-neoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine on the membrane and the activity of protein kinase Cα. FEBS Journal, 2001, 268, 6369-6378.	0.2	11
72	The C2 domain of protein kinase Cα is directly involved in the diacylglycerol-dependent binding of the C1 domain to the membrane. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1487, 246-254.	1.2	25

SENENA CORBALAN

#	Article	IF	CITATIONS
73	Study of the Secondary Structure of the C-Terminal Domain of the Antiapoptotic Protein Bcl-2 and Its Interaction with Model Membranesâ€,‡. Biochemistry, 2000, 39, 7744-7752.	1.2	20
74	Ca2+ bridges the C2 membrane-binding domain of protein kinase Cα directly to phosphatidylserine. EMBO Journal, 1999, 18, 6329-6338.	3.5	323
75	Effect of Calcium and Phosphatidic Acid Binding on the C2 Domain of PKCα As Studied by Fourier Transform Infrared Spectroscopyâ€. Biochemistry, 1999, 38, 9667-9675.	1.2	39
76	A comparative study of the activation of protein kinase C $\hat{I}\pm$ by different diacylglycerol isomers. Biochemical Journal, 1999, 337, 387-395.	1.7	41
77	Determination of the calcium-binding sites of the C2 domain of protein kinase Cl̂± that are critical for its translocation to the plasma membrane. Biochemical Journal, 1999, 337, 513-521.	1.7	58
78	A comparative study of the activation of protein kinase C α by different diacylglycerol isomers. Biochemical Journal, 1999, 337, 387.	1.7	20
79	Determination of the calcium-binding sites of the C2 domain of protein kinase Cl̂± that are critical for its translocation to the plasma membrane. Biochemical Journal, 1999, 337, 513.	1.7	23
80	Location of N-cyclohexyl-N'-(4-dimethyl-amino-alpha-naphthyl)carbodiimide-binding site in sarcoplasmic reticulum Ca2+-transporting ATPase. FEBS Journal, 1998, 253, 339-344.	0.2	7
81	Regulation of Sos Activity by Intramolecular Interactions. Molecular and Cellular Biology, 1998, 18, 880-886.	1.1	90
82	The Solution Structure of the Pleckstrin Homology Domain of Human SOS1. Journal of Biological Chemistry, 1997, 272, 30340-30344.	1.6	58
83	The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO Journal, 1997, 16, 1351-1359.	3.5	118
84	Involvement of an arginyl residue in the nucleotide-binding site of Ca2+-ATPase from sarcoplasmic reticulum as seen by reaction with phenylglyoxal. Biochemical Journal, 1996, 318, 179-185.	1.7	1
85	Identification of the Mitogen-Activated Protein Kinase Phosphorylation Sites on Human Sosl That Regulate Interaction with Grb2. Molecular and Cellular Biology, 1996, 16, 5674-5682.	1.1	158
86	Extensive Proteolytic Digestion of the (Ca2++Mg2+)-ATPase from Sarcoplasmic Reticulum Leads to a Highly Hydrophobic Proteinaceous Residue with a Mainly .alphaHelical Structure. Biochemistry, 1994, 33, 8247-8254.	1.2	30
87	Structural aspects of the Ca2+-ATPase from sarcoplasmic reticulum. Biochemical Society Transactions, 1994, 22, 826-829.	1.6	4
88	Chemical modification of Ca2+-ATPase from sarcoplasmic reticulum with phenylglyoxal. Biochemical Society Transactions, 1994, 22, 381S-381S.	1.6	3
89	Intramolecular distances within the Ca2+-ATPase from sarcoplasmic reticulum as estimated through fluorescence energy transfer between probes. FEBS Journal, 1993, 217, 737-744.	0.2	18
90	A kinetic study of an unstable enzyme measured through coupling reactions. Application to the self-inactivation of detergent-solubilized Ca2+-ATPase from sarcoplasmic reticulum. BBA - Proteins and Proteomics, 1993, 1203, 45-52.	2.1	4

#	Article	IF	CITATIONS
91	Characterization of ruthenium red-binding sites of the Ca2+-ATPase from sarcoplasmic reticulum and their interaction with Ca2+-binding sites. Biochemical Journal, 1992, 287, 767-774.	1.7	25