
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8062364/publications.pdf Version: 2024-02-01

THOMAS L COULD

#	Article	IF	CITATIONS
1	Paternal nicotine enhances fear memory, reduces nicotine administration, and alters hippocampal genetic and neural function in offspring. Addiction Biology, 2021, 26, e12859.	2.6	19
2	Systems genetic analysis of nicotine withdrawal deficits in hippocampusâ€dependent learning. Genes, Brain and Behavior, 2021, 20, e12734.	2.2	6
3	Multigenerational nicotine exposure affects offspring nicotine metabolism, nicotine-induced hypothermia, and basal corticosterone in a sex-dependent manner. Neurotoxicology and Teratology, 2021, 85, 106972.	2.4	9
4	Adolescent Stress Reduces Adult Morphine-Induced Behavioral Sensitization in C57BL/6J Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 678102.	2.0	5
5	Therapeutic potential of ketamine for alcohol use disorder. Neuroscience and Biobehavioral Reviews, 2021, 126, 573-589.	6.1	23
6	Stress and nicotine during adolescence disrupts adult hippocampalâ€dependent learning and alters stress reactivity. Addiction Biology, 2020, 25, e12769.	2.6	9
7	Cognitive rigidity and BDNF-mediated frontostriatal glutamate neuroadaptations during spontaneous nicotine withdrawal. Neuropsychopharmacology, 2020, 45, 866-876.	5.4	10
8	Impact of nicotine, alcohol, and cocaine exposure on germline integrity and epigenome. Neuropharmacology, 2020, 173, 108127.	4.1	14
9	The effects of adolescent alcohol exposure on learning and related neurobiology in humans and rodents. Neurobiology of Learning and Memory, 2020, 172, 107234.	1.9	13
10	Adolescent and adult nicotine exposure differentially impacts oral nicotine and oral saccharin self-administration in mice. Behavioural Brain Research, 2019, 359, 836-844.	2.2	12
11	Multigenerational and transgenerational effects of paternal exposure to drugs of abuse on behavioral and neural function. European Journal of Neuroscience, 2019, 50, 2453-2466.	2.6	60
12	Differential effects of $\hat{l}\pm4\hat{l}^22$ nicotinic receptor antagonists and partial-agonists on contextual fear extinction in male C57BL/6 mice. Psychopharmacology, 2018, 235, 1211-1219.	3.1	4
13	Chronic nicotine differentially alters spontaneous recovery of contextual fear in male and female mice. Behavioural Brain Research, 2018, 341, 176-180.	2.2	2
14	Sex differences in the effects of nicotine on contextual fear extinction. Pharmacology Biochemistry and Behavior, 2018, 165, 25-28.	2.9	3
15	Tyrosine receptor kinase B receptor activation reverses the impairing effects of acute nicotine on contextual fear extinction. Journal of Psychopharmacology, 2018, 32, 367-372.	4.0	4
16	Nicotine exposure leads to deficits in differential cued fear conditioning in mice and humans: A potential role of the anterior cingulate cortex. Neuroscience Letters, 2018, 673, 142-149.	2.1	5
17	Pre-adolescent and adolescent mice are less sensitive to the effects of acute nicotine on extinction and spontaneous recovery. Brain Research Bulletin, 2018, 138, 50-55.	3.0	11
18	Neuregulin 3 Signaling Mediates Nicotine-Dependent Synaptic Plasticity in the Orbitofrontal Cortex and Cognition. Neuropsychopharmacology, 2018, 43, 1343-1354.	5.4	22

THOMAS J GOULD

#	Article	IF	CITATIONS
19	Digital Delivery of Meditative Movement Training Improved Health of Cigarette-Smoke-Exposed Subjects. Frontiers in Public Health, 2018, 6, 282.	2.7	3
20	Nicotine modulates contextual fear extinction through changes in ventral hippocampal GABAergic function. Neuropharmacology, 2018, 141, 192-200.	4.1	11
21	The long-term cognitive consequences of adolescent exposure to recreational drugs of abuse. Learning and Memory, 2018, 25, 481-491.	1.3	37
22	Choline ameliorates adult learning deficits and reverses epigenetic modification of chromatin remodeling factors related to adolescent nicotine exposure. Neurobiology of Learning and Memory, 2018, 155, 239-248.	1.9	16
23	Basic Science and Public Policy: Informed Regulation for Nicotine and Tobacco Products. Nicotine and Tobacco Research, 2018, 20, 789-799.	2.6	19
24	Differential Effects of Nicotine Exposure on the Hippocampus Across Lifespan. Current Neuropharmacology, 2018, 16, 388-402.	2.9	16
25	Chronic nicotine exposure in preadolescence enhances later spontaneous recovery of fear memory Behavioral Neuroscience, 2018, 132, 240-246.	1.2	1
26	Developmental toxicity of nicotine: A transdisciplinary synthesis and implications for emerging tobacco products. Neuroscience and Biobehavioral Reviews, 2017, 72, 176-189.	6.1	135
27	Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus. Journal of Psychopharmacology, 2017, 31, 934-944.	4.0	7
28	Acute nicotine disrupts consolidation of contextual fear extinction and alters long-term memory-associated hippocampal kinase activity. Neurobiology of Learning and Memory, 2017, 145, 143-150.	1.9	6
29	Chronic fluoxetine ameliorates adolescent chronic nicotine exposure-induced long-term adult deficits in trace conditioning. Neuropharmacology, 2017, 125, 272-283.	4.1	10
30	Chronic Nicotine Treatment During Adolescence Attenuates the Effects of Acute Nicotine in Adult Contextual Fear Learning. Nicotine and Tobacco Research, 2017, 19, 87-93.	2.6	9
31	c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning. Neuroscience Letters, 2016, 627, 61-64.	2.1	3
32	Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse. Neuroscience and Biobehavioral Reviews, 2016, 65, 173-184.	6.1	45
33	Adolescent mice are less sensitive to the effects of acute nicotine on context pre-exposure than adults. Brain Research, 2016, 1642, 445-451.	2.2	7
34	Longâ€ŧerm effects of chronic nicotine on emotional and cognitive behaviors and hippocampus cell morphology in mice: comparisons of adult and adolescent nicotine exposure. European Journal of Neuroscience, 2016, 44, 2818-2828.	2.6	29
35	Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learning and Memory, 2016, 23, 515-533.	1.3	213
36	Impairment of contextual fear extinction by chronic nicotine and withdrawal from chronic nicotine is associated with hippocampal nAChR upregulation. Neuropharmacology, 2016, 109, 341-348.	4.1	12

#	Article	IF	CITATIONS
37	The role of working memory and declarative memory in trace conditioning. Neurobiology of Learning and Memory, 2016, 134, 193-209.	1.9	37
38	Acute nicotine enhances spontaneous recovery of contextual fear and changes <i>c-fos</i> early gene expression in infralimbic cortex, hippocampus, and amygdala. Learning and Memory, 2016, 23, 405-414.	1.3	19
39	nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophrenia Research, 2016, 171, 1-15.	2.0	71
40	Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory. Physiology and Behavior, 2016, 155, 162-171.	2.1	48
41	Cognitive control deficits during mecamylamine-precipitated withdrawal in mice: Possible links to frontostriatal BDNF imbalance. Neurobiology of Learning and Memory, 2016, 128, 110-116.	1.9	14
42	High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction. Neurobiology of Learning and Memory, 2016, 128, 17-22.	1.9	15
43	Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice. Behavioural Brain Research, 2016, 298, 69-77.	2.2	9
44	Negative affective states and cognitive impairments in nicotine dependence. Neuroscience and Biobehavioral Reviews, 2015, 58, 168-185.	6.1	71
45	Nicotine Addiction and Psychiatric Disorders. International Review of Neurobiology, 2015, 124, 171-208.	2.0	34
46	Stronger learning recruits additional cell-signaling cascades: c-Jun-N-terminal kinase 1 (JNK1) is necessary for expression of stronger contextual fear conditioning. Neurobiology of Learning and Memory, 2015, 118, 162-166.	1.9	8
47	Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochemical Pharmacology, 2015, 97, 498-511.	4.4	72
48	Strain-dependent performance in nicotine-induced conditioned place preference Behavioral Neuroscience, 2015, 129, 37-41.	1.2	12
49	Thyroid receptor β involvement in the effects of acute nicotine onÂhippocampus-dependent memory. Neuropharmacology, 2015, 93, 155-163.	4.1	6
50	Contributions of β2 subunit-containing nAChRs to chronic nicotine-induced alterations in cognitive flexibility in mice. Psychopharmacology, 2015, 232, 1207-1217.	3.1	22
51	ABT-089, but not ABT-107, ameliorates nicotine withdrawal-induced cognitive deficits in C57BL6/J mice. Behavioural Pharmacology, 2015, 26, 241-248.	1.7	11
52	Thyroid hormone signaling: Contribution to neural function, cognition, and relationship to nicotine. Neuroscience and Biobehavioral Reviews, 2015, 57, 252-263.	6.1	16
53	The GSK3 Signaling Pathway Is Activated by Cocaine and Is Critical for Cocaine Conditioned Reward in Mice. PLoS ONE, 2014, 9, e88026.	2.5	39
54	Donepezil reverses nicotine withdrawal-induced deficits in contextual fear conditioning in c57bl/6j mice Behavioral Neuroscience, 2014, 128, 588-593.	1.2	11

THOMAS J GOULD

#	Article	IF	CITATIONS
55	Adolescent mice, unlike adults, consume more alcohol in the presence of peers than alone. Developmental Science, 2014, 17, 79-85.	2.4	69
56	Involvement of neuronal β2 subunit-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal: Implications for pharmacotherapies. Journal of Clinical Pharmacy and Therapeutics, 2014, 39, 457-467.	1.5	12
57	Withdrawal From Chronic Nicotine Reduces Thyroid Hormone Levels and Levothyroxine Treatment Ameliorates Nicotine Withdrawal-Induced Deficits in Hippocampus-Dependent Learning in C57BL/6J Mice. Nicotine and Tobacco Research, 2014, 17, 690-696.	2.6	6
58	The effects of acute nicotine on contextual safety discrimination. Journal of Psychopharmacology, 2014, 28, 1064-1070.	4.0	16
59	Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiology of Learning and Memory, 2014, 107, 108-132.	1.9	59
60	Acute nicotine delays extinction of contextual fear in mice. Behavioural Brain Research, 2014, 263, 133-137.	2.2	37
61	The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 2014, 123, 45-54.	2.9	308
62	Reactivation of cocaine reward memory engages the Akt/GSK3/mTOR signaling pathway and can be disrupted by GSK3 inhibition. Psychopharmacology, 2014, 231, 3109-3118.	3.1	68
63	17β-Estradiol regulates histone alterations associated with memory consolidation and increases <i>Bdnf</i> promoter acetylation in middle-aged female mice. Learning and Memory, 2014, 21, 457-467.	1.3	62
64	Nicotine shifts the temporal activation of hippocampal protein kinase A and extracellular signal-regulated kinase 1/2 to enhance long-term, but not short-term, hippocampus-dependent memory. Neurobiology of Learning and Memory, 2014, 109, 151-159.	1.9	24
65	Dissociation of tolerance and nicotine withdrawal-associated deficits in contextual fear. Brain Research, 2014, 1559, 1-10.	2.2	25
66	Malleability in the development of spatial reorientation. Developmental Psychobiology, 2013, 55, 243-255.	1.6	65
67	Genetic background influences the effects of withdrawal from chronic nicotine on learning and high-affinity nicotinic acetylcholine receptor binding in the dorsal and ventral hippocampus. Psychopharmacology, 2013, 225, 201-208.	3.1	30
68	Withdrawal from chronic nicotine and subsequent sensitivity to nicotine challenge on contextual learning. Behavioural Brain Research, 2013, 250, 58-61.	2.2	21
69	Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behavioural Brain Research, 2013, 238, 134-145.	2.2	54
70	Divergent Functional Effects of Sazetidine-A and Varenicline During Nicotine Withdrawal. Neuropsychopharmacology, 2013, 38, 2035-2047.	5.4	27
71	The effects of acute nicotine, chronic nicotine, and withdrawal from chronic nicotine on performance of a cued appetitive response Behavioral Neuroscience, 2013, 127, 303-310.	1.2	19
72	Targeted Deletion of the Mouse α2 Nicotinic Acetylcholine Receptor Subunit Gene (<i>Chrna</i> 2) Potentiates Nicotine-Modulated Behaviors. Journal of Neuroscience, 2013, 33, 7728-7741.	3.6	61

#	Article	IF	CITATIONS
73	Comparison of the performance of DBA/2 and C57BL/6 mice in transitive inference and foreground and background contextual fear conditioning Behavioral Neuroscience, 2012, 126, 249-257.	1.2	17
74	<i>Gadd45b</i> knockout mice exhibit selective deficits in hippocampus-dependent long-term memory. Learning and Memory, 2012, 19, 319-324.	1.3	74
75	The duration of nicotine withdrawal-associated deficits in contextual fear conditioning parallels changes in hippocampal high affinity nicotinic acetylcholine receptor upregulation. Neuropharmacology, 2012, 62, 2118-2125.	4.1	55
76	Developmental effects of acute, chronic, and withdrawal from chronic nicotine on fear conditioning. Neurobiology of Learning and Memory, 2012, 97, 482-494.	1.9	71
77	Nicotinic receptors in the dorsal and ventral hippocampus differentially modulate contextual fear conditioning. Hippocampus, 2012, 22, 1681-1690.	1.9	56
78	Strain-dependent Effects of Acute, Chronic, and Withdrawal from Chronic Nicotine on Fear Conditioning. Behavior Genetics, 2012, 42, 133-150.	2.1	58
79	Learning and Nicotine Interact to Increase CREB Phosphorylation at the jnk1 Promoter in the Hippocampus. PLoS ONE, 2012, 7, e39939.	2.5	26
80	The effects of galantamine on nicotine withdrawal-induced deficits in contextual fear conditioning in C57BL/6 mice. Behavioural Brain Research, 2011, 223, 53-57.	2.2	23
81	Nicotine ameliorates NMDA receptor antagonist-induced deficits in contextual fear conditioning through high-affinity nicotinic acetylcholine receptors in the hippocampus. Neuropharmacology, 2011, 60, 617-625.	4.1	29
82	Nicotine acts in the anterior cingulate, but not dorsal or ventral hippocampus, to reverse ethanol-induced learning impairments in the plus-maze discriminative avoidance task. Addiction Biology, 2011, 16, 176-188.	2.6	24
83	The effects of acute, chronic, and withdrawal from chronic nicotine on novel and spatial object recognition in male C57BL/6J mice. Psychopharmacology, 2011, 217, 353-365.	3.1	62
84	The enhancement of contextual fear conditioning by ABT-418. Behavioural Pharmacology, 2010, 21, 246-249.	1.7	12
85	Involvement of Hippocampal Jun-N Terminal Kinase Pathway in the Enhancement of Learning and Memory by Nicotine. Neuropsychopharmacology, 2010, 35, 483-492.	5.4	40
86	Addiction and cognition. Addiction Science & amp; Clinical Practice, 2010, 5, 4-14.	2.6	120
87	Nicotine withdrawal disrupts new contextual learning. Pharmacology Biochemistry and Behavior, 2009, 92, 117-123.	2.9	42
88	Interactive effects of ethanol and nicotine on learning, anxiety, and locomotion in C57BL/6 mice in the plus-maze discriminative avoidance task. Neuropharmacology, 2009, 57, 302-310.	4.1	25
89	Hippocampal nAChRs mediate nicotine withdrawal-related learning deficits. European Neuropsychopharmacology, 2009, 19, 551-561.	0.7	55
90	The Hippocampus and Cingulate Cortex Differentially Mediate the Effects of Nicotine on Learning Versus on Ethanol-Induced Learning Deficits Through Different Effects at Nicotinic Receptors. Neuropsychopharmacology, 2009, 34, 2167-2179.	5.4	22

#	Article	IF	CITATIONS
91	Of mice (Mus musculus) and toddlers (Homo sapiens): Evidence for species-general spatial reorientation Journal of Comparative Psychology (Washington, D C: 1983), 2009, 123, 342-345.	0.5	23
92	Effects of ethanol and caffeine on behavior in C57BL/6 mice in the plus-maze discriminative avoidance task Behavioral Neuroscience, 2009, 123, 1271-1278.	1.2	38
93	Interactive effects of ethanol and nicotine on learning in C57BL/6J mice depend on both dose and duration of treatment. Psychopharmacology, 2008, 196, 483-495.	3.1	48
94	Modulation of Hippocampus-Dependent Learning and Synaptic Plasticity by Nicotine. Molecular Neurobiology, 2008, 38, 101-121.	4.0	222
95	β2 subunit containing acetylcholine receptors mediate nicotine withdrawal deficits in the acquisition of contextual fear conditioning. Neurobiology of Learning and Memory, 2008, 89, 106-113.	1.9	64
96	Varenicline ameliorates ethanol-induced deficits in learning in C57BL/6 mice. Neurobiology of Learning and Memory, 2008, 90, 230-236.	1.9	34
97	Nicotine withdrawal disrupts both foreground and background contextual fear conditioning but not pre-pulse inhibition of the acoustic startle response in C57BL/6 mice. Behavioural Brain Research, 2008, 190, 174-181.	2.2	41
98	Genetic variability in nicotinic acetylcholine receptors and nicotine addiction: Converging evidence from human and animal research. Behavioural Brain Research, 2008, 193, 1-16.	2.2	71
99	Varenicline ameliorates nicotine withdrawal-induced learning deficits in C57BL/6 mice Behavioral Neuroscience, 2008, 122, 1166-1171.	1.2	59
100	Nicotine enhances context learning but not context-shock associative learning Behavioral Neuroscience, 2008, 122, 1158-1165.	1.2	46
101	Associative Learning, the Hippocampus, and Nicotine Addiction. Current Drug Abuse Reviews, 2008, 1, 9-19.	3.4	42
102	Atomoxetine Reverses Nicotine Withdrawal-Associated Deficits in Contextual Fear Conditioning. Neuropsychopharmacology, 2007, 32, 2011-2019.	5.4	53
103	Hippocampal α4β2 Nicotinic Acetylcholine Receptor Involvement in the Enhancing Effect of Acute Nicotine on Contextual Fear Conditioning. Journal of Neuroscience, 2007, 27, 10870-10877.	3.6	100
104	Extracellular signal-regulated kinase 1/2 involvement in the enhancement of contextual fear conditioning by nicotine Behavioral Neuroscience, 2007, 121, 1119-1124.	1.2	31
105	Signal transduction mechanisms within the entorhinal cortex that support latent inhibition of cued fear conditioning. Neurobiology of Learning and Memory, 2007, 88, 359-368.	1.9	16
106	Reversible inactivation of the entorhinal cortex disrupts the establishment and expression of latent inhibition of cued fear conditioning in C57BL/6 mice. Hippocampus, 2007, 17, 462-470.	1.9	38
107	Acute Ethanol Has Biphasic Effects on Short―and Longâ€Term Memory in Both Foreground and Background Contextual Fear Conditioning in C57BL/6 Mice. Alcoholism: Clinical and Experimental Research, 2007, 31, 1528-1537.	2.4	57
108	Bupropion dose-dependently reverses nicotine withdrawal deficits in contextual fear conditioning. Pharmacology Biochemistry and Behavior, 2007, 88, 179-187.	2.9	48

#	Article	IF	CITATIONS
109	β2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology, 2007, 190, 343-352.	3.1	68
110	Nicotine enhances both foreground and background contextual fear conditioning. Neuroscience Letters, 2006, 394, 202-205.	2.1	67
111	Nicotine and Hippocampus-Dependent Learning: Implications for Addiction. Molecular Neurobiology, 2006, 34, 93-108.	4.0	57
112	The effects of DHBE and MLA on nicotine-induced enhancement of contextual fear conditioning in C57BL/6 mice. Psychopharmacology, 2006, 184, 345-352.	3.1	74
113	Rolipram Attenuates MK-801-Induced Deficits in Latent Inhibition Behavioral Neuroscience, 2005, 119, 595-602.	1.2	43
114	The interactive effects of nicotinic and muscarinic cholinergic receptor inhibition on fear conditioning in young and aged C57BL/6 mice. Pharmacology Biochemistry and Behavior, 2005, 80, 251-262.	2.9	36
115	Withdrawal from Chronic Nicotine Administration Impairs Contextual Fear Conditioning in C57BL/6 Mice. Journal of Neuroscience, 2005, 25, 8708-8713.	3.6	141
116	Coantagonism of glutamate receptors and nicotinic acetylcholinergic receptors disrupts fear conditioning and latent inhibition of fear conditioning. Learning and Memory, 2005, 12, 389-398.	1.3	31
117	Atomoxetine and nicotine enhance prepulse inhibition of acoustic startle in C57BL/6 mice. Neuroscience Letters, 2005, 377, 85-90.	2.1	40
118	Age-related deficits in the retention of memories for cued fear conditioning are reversed by galantamine treatment. Behavioural Brain Research, 2005, 165, 160-171.	2.2	53
119	A Central Role for Norepinephrine in the Modulation of Cerebellar Learning Tasks. Behavioral and Cognitive Neuroscience Reviews, 2004, 3, 131-138.	3.9	25
120	Sensorimotor Gating Deficits in Transgenic Mice Expressing a Constitutively Active Form of Gsα. Neuropsychopharmacology, 2004, 29, 494-501.	5.4	33
121	Latent inhibition of cued fear conditioning: an NMDA receptor-dependent process that can be established in the presence of anisomycin. European Journal of Neuroscience, 2004, 20, 818-826.	2.6	20
122	Nicotine enhances trace cued fear conditioning but not delay cued fear conditioning in C57BL/6 mice. Behavioural Brain Research, 2004, 155, 167-173.	2.2	76
123	Inhibition of Mitogen-Activated Protein Kinase-Extracellular Signal-Regulated Kinase Disrupts Latent Inhibition of Cued Fear Conditioning in C57BL/6 Mice Behavioral Neuroscience, 2004, 118, 1444-1449.	1.2	6
124	Nicotine produces a within-subject enhancement of contextual fear conditioning in C57BL/6 mice independent of sex. Integrative Psychological and Behavioral Science, 2003, 38, 124-132.	0.3	43
125	Nicotine and ethanol enhancements of acoustic startle reflex are mediated in part by dopamine in C57BL/6J mice. Pharmacology Biochemistry and Behavior, 2003, 76, 179-186.	2.9	12
126	Nicotine enhances contextual fear conditioning in C57BL/6J mice at 1 and 7 days post-training. Neurobiology of Learning and Memory, 2003, 80, 147-157.	1.9	119

#	Article	IF	CITATIONS
127	Ethanol disrupts fear conditioning in C57BL/6 mice. Journal of Psychopharmacology, 2003, 17, 77-81.	4.0	61
128	Nicotine Enhances Contextual Fear Conditioning and Ameliorates Ethanol-Induced Deficits in Contextual Fear Conditioning Behavioral Neuroscience, 2003, 117, 1276-1282.	1.2	77
129	Age-Related Impairment in the 250-Millisecond Delay Eyeblink Classical Conditioning Procedure in C57BL/6 Mice. Learning and Memory, 2002, 9, 321-336.	1.3	33
130	Neuronal Nicotinic Acetylcholine Receptors: Involvement in Alzheimer's Disease and Schizophrenia. Behavioral and Cognitive Neuroscience Reviews, 2002, 1, 5-20.	3.9	51
131	Differential sensitivity to lithium's reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behavioural Brain Research, 2001, 118, 95-105.	2.2	82
132	Nicotine enhances latent inhibition and ameliorates ethanol-induced deficits in latent inhibition. Nicotine and Tobacco Research, 2001, 3, 17-24.	2.6	56
133	Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Research, 2000, 866, 211-217.	2.2	262
134	Behavior and mutagenesis screens: the importance of baseline analysis of inbred strains. Mammalian Genome, 2000, 11, 555-564.	2.2	151
135	Nicotine enhancement of contextual fear conditioning. Behavioural Brain Research, 1999, 102, 31-39.	2.2	146
136	Antioxidant protection of cerebellar β-adrenergic receptor function in aged F344 rats. Neuroscience Letters, 1998, 250, 165-168.	2.1	8
137	The effects of aging on cerebellar β-adrenergic receptor activation and motor learning in female F344 rats. Neuroscience Letters, 1996, 216, 53-56.	2.1	16
138	Acquisition of a runway motor learning task is impaired by a beta adrenergic antagonist in F344 rats. Behavioural Brain Research, 1996, 78, 235-241.	2.2	26
139	Changes in Rabbit Cerebellar Cortical and Interpositus Nucleus Activity during Acquisition, Extinction, and Backward Classical Eyelid Conditioning. Neurobiology of Learning and Memory, 1996, 65, 17-34.	1.9	118
140	Decline in striatal dopamine D1 and D2 receptor activation in aged F344 rats. Neurobiology of Aging, 1996, 17, 877-883.	3.1	17
141	Effects of dietary restriction on motor learning and cerebellar noradrenergic dysfunction in aged F344 rats. Brain Research, 1995, 684, 150-158.	2.2	23
142	The effects of chronic treatment with N-tert-butyl-α-phenylnitrone on cerebellar noradrenergic receptor function in aged F344 rats. Brain Research, 1994, 660, 333-336.	2.2	18
143	Multiple-unit activity from rabbit cerebellar cortex and interpositus nucleus during classical discrimination/reversal eyelid conditioning. Brain Research, 1994, 652, 98-106.	2.2	43
144	Possible CS and US pathways for rabbit classical eyelid conditioning: Electrophysiological evidence for projections from the pontine nuclei and inferior olive to cerebellar cortex and nuclei. Behavioral and Neural Biology, 1993, 60, 172-185.	2.2	58

#	Article	IF	CITATIONS
145	Haloperidol impairs classical nictitating membrane conditioning in rabbits when stimulation of the pontine nuclei is used as a conditioned stimulus. Life Sciences, 1991, 49, 233-240.	4.3	Ο