Huimin Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8062309/publications.pdf

Version: 2024-02-01

331670 289244 2,707 40 21 40 citations h-index g-index papers 41 41 41 2361 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Controlling the elasticity of polyacrylonitrile fibers <i>via</i> ionic liquids containing cyano-based anions. RSC Advances, 2022, 12, 8656-8660.	3.6	2
2	Low-Cost Transformation of Biomass-Derived Carbon to High-Performing Nano-graphite via Low-Temperature Electrochemical Graphitization. ACS Applied Materials & Low-Temperature Electrochemical Graphitization. ACS Applied Materials & Low-France (1988) 13, 4393-4401.	8.0	26
3	Molten Salt Assisted Low-Temperature Electro-Catalytic Graphitization of Coal Chars. Journal of the Electrochemical Society, 2021, 168, 046504.	2.9	8
4	Using Ionic Liquid Additive to Enhance Lubricating Performance for Low-Viscosity Engine Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 7198-7205.	6.7	19
5	Wear penalty for steel rubbing against hard coatings in reactive lubricants due to tribochemical interactions. Tribology International, 2021, 160, 107010.	5.9	8
6	Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating. Nano Letters, 2020, 20, 7995-8000.	9.1	39
7	Tuning the Cation–Anion Interactions by Methylation of the Pyridinium Cation: An X-ray Photoelectron Spectroscopy Study of Picolinium Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 6657-6663.	2.6	8
8	Competitive Adsorption of Ionic Liquids Versus Friction Modifier and Anti-Wear Additive at Solid/Lubricant Interfaceâ€"Speciation with Vibrational Sum Frequency Generation Spectroscopy. Lubricants, 2020, 8, 98.	2.9	8
9	X-ray photoelectron spectroscopy of piperidinium ionic liquids: a comparison to the charge delocalised pyridinium analogues. Physical Chemistry Chemical Physics, 2020, 22, 11976-11983.	2.8	7
10	Competitive Adsorption of Lubricant Base Oil and Ionic Liquid Additives at Air/Liquid and Solid/Liquid Interfaces. Langmuir, 2020, 36, 7582-7592.	3.5	14
11	Direct Recycling of Spent NCM Cathodes through Ionothermal Lithiation. Advanced Energy Materials, 2020, 10, 2001204.	19.5	129
12	Ultralow Boundary Lubrication Friction by Three-Way Synergistic Interactions among Ionic Liquid, Friction Modifier, and Dispersant. ACS Applied Materials & Early; Interfaces, 2020, 12, 17077-17090.	8.0	36
13	Ion-gated carbon molecular sieve gas separation membranes. Journal of Membrane Science, 2020, 604, 118013.	8.2	15
14	Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8663-8673.	8.0	9
15	Electrochemically induced crystallization of amorphous materials in molten MgCl ₂ : boron nitride and hard carbon. Chemical Communications, 2020, 56, 2783-2786.	4.1	10
16	New Functionality of Ionic Liquids as Lubricant Additives: Mitigating Rolling Contact Fatigue. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30484-30492.	8.0	29
17	Improved Lubricating Performance by Combining Oil-Soluble Hairy Silica Nanoparticles and an Ionic Liquid as an Additive for a Synthetic Base Oil. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15129-15139.	8.0	51
18	Extraction of Rare Earths in Ionic Liquids <i>Via</i> Competitive Ligand Complexation between TODGA and DTPA. Solvent Extraction and Ion Exchange, 2018, 36, 574-582.	2.0	6

#	Article	IF	Citations
19	Compatibility between Various Ionic Liquids and an Organic Friction Modifier as Lubricant Additives. Langmuir, 2018, 34, 10711-10720.	3.5	31
20	Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story. Chemical Communications, 2017, 53, 2744-2747.	4.1	32
21	Tandem dissolution of UO ₃ in amide-based acidic ionic liquid and in situ electrodeposition of UO ₂ with regeneration of the ionic liquid: a closed cycle. Dalton Transactions, 2016, 45, 10151-10154.	3.3	14
22	Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives. Tribology Letters, 2016, 63, 1.	2.6	107
23	Does the Use of Diamondâ€Like Carbon Coating and Organophosphate Lubricant Additive Together Cause Excessive Tribochemical Material Removal?. Advanced Materials Interfaces, 2015, 2, 1500213.	3.7	15
24	Synergistic Effects Between Phosphoniumâ€Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives. Advanced Materials, 2015, 27, 4767-4774.	21.0	168
25	Tribological Bench and Engine Dynamometer Tests of a Low Viscosity SAE 0W-16 Engine Oil Using a Combination of Ionic Liquid and ZDDP as Anti-Wear Additives. Frontiers in Mechanical Engineering, 2015, 1, .	1.8	20
26	Extraction of lanthanides using 1-hydroxy-6-N-octylcarboxamido-2(1H)-pyridinone as an extractant via competitive ligand complexations between aqueous and organic phases. RSC Advances, 2015, 5, 107054-107057.	3.6	4
27	Dissolution of the Rareâ€Earth Mineral Bastnaesite by Acidic Amide Ionic Liquid for Recovery of Critical Materials. European Journal of Inorganic Chemistry, 2015, 2015, 4354-4361.	2.0	17
28	Phosphonium-Organophosphate Ionic Liquids as Lubricant Additives: Effects of Cation Structure on Physicochemical and Tribological Characteristics. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22585-22593.	8.0	163
29	Ionic Liquids Composed of Phosphonium Cations and Organophosphate, Carboxylate, and Sulfonate Anions as Lubricant Antiwear Additives. Langmuir, 2014, 30, 13301-13311.	3. 5	142
30	Improving corrosion resistance of AZ31B magnesium alloy via a conversion coating produced by a protic ammonium-phosphate ionic liquid. Thin Solid Films, 2014, 568, 44-51.	1.8	41
31	Antiwear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive. ACS Applied Materials & Diterfaces, 2012, 4, 997-1002.	8.0	296
32	lonic Liquid and Silica Sol-Gel Composite Materials Doped with N,N,N′,N′-tetra(<i>n</i> octyl)diglycolamide for Extraction of La ³⁺ and Ba ²⁺ . Separation Science and Technology, 2012, 47, 244-249.	2.5	14
33	Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear, 2012, 289, 58-64.	3.1	240
34	TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening. Journal of Materials Chemistry, 2011, 21, 9487.	6.7	38
35	Nanostructure and Composition of Tribo-Boundary Films Formed in Ionic Liquid Lubrication. Tribology Letters, 2011, 43, 205-211.	2.6	53
36	Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation. Journal of Membrane Science, 2010, 353, 177-183.	8.2	190

Huimin Luo

#	Article	IF	CITATION
37	lonic Liquids as Novel Lubricants and Additives for Diesel Engine Applications. Tribology Letters, 2009, 35, 181-189.	2.6	168
38	Tribological characteristics of aluminum alloys sliding against steel lubricated by ammonium and imidazolium ionic liquids. Wear, 2009, 267, 1226-1231.	3.1	125
39	Facile Ionothermal Synthesis of Microporous and Mesoporous Carbons from Task Specific Ionic Liquids. Journal of the American Chemical Society, 2009, 131, 4596-4597.	13.7	404
40	19F NMR study of 1-halo-F-adamantanes. Magnetic Resonance in Chemistry, 1993, 31, 969-971.	1.9	1