
Huimin Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8062309/publications.pdf Version: 2024-02-01

HUMINLUO

#	Article	IF	CITATIONS
1	Facile Ionothermal Synthesis of Microporous and Mesoporous Carbons from Task Specific Ionic Liquids. Journal of the American Chemical Society, 2009, 131, 4596-4597.	13.7	404
2	Antiwear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive. ACS Applied Materials & Interfaces, 2012, 4, 997-1002.	8.0	296
3	Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear, 2012, 289, 58-64.	3.1	240
4	Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation. Journal of Membrane Science, 2010, 353, 177-183.	8.2	190
5	lonic Liquids as Novel Lubricants and Additives for Diesel Engine Applications. Tribology Letters, 2009, 35, 181-189.	2.6	168
6	Synergistic Effects Between Phosphoniumâ€Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives. Advanced Materials, 2015, 27, 4767-4774.	21.0	168
7	Phosphonium-Organophosphate Ionic Liquids as Lubricant Additives: Effects of Cation Structure on Physicochemical and Tribological Characteristics. ACS Applied Materials & Interfaces, 2014, 6, 22585-22593.	8.0	163
8	Ionic Liquids Composed of Phosphonium Cations and Organophosphate, Carboxylate, and Sulfonate Anions as Lubricant Antiwear Additives. Langmuir, 2014, 30, 13301-13311.	3.5	142
9	Direct Recycling of Spent NCM Cathodes through Ionothermal Lithiation. Advanced Energy Materials, 2020, 10, 2001204.	19.5	129
10	Tribological characteristics of aluminum alloys sliding against steel lubricated by ammonium and imidazolium ionic liquids. Wear, 2009, 267, 1226-1231.	3.1	125
11	Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives. Tribology Letters, 2016, 63, 1.	2.6	107
12	Nanostructure and Composition of Tribo-Boundary Films Formed in Ionic Liquid Lubrication. Tribology Letters, 2011, 43, 205-211.	2.6	53
13	Improved Lubricating Performance by Combining Oil-Soluble Hairy Silica Nanoparticles and an Ionic Liquid as an Additive for a Synthetic Base Oil. ACS Applied Materials & Interfaces, 2018, 10, 15129-15139.	8.0	51
14	Improving corrosion resistance of AZ31B magnesium alloy via a conversion coating produced by a protic ammonium-phosphate ionic liquid. Thin Solid Films, 2014, 568, 44-51.	1.8	41
15	Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating. Nano Letters, 2020, 20, 7995-8000.	9.1	39
16	TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening. Journal of Materials Chemistry, 2011, 21, 9487.	6.7	38
17	Ultralow Boundary Lubrication Friction by Three-Way Synergistic Interactions among Ionic Liquid, Friction Modifier, and Dispersant. ACS Applied Materials & Interfaces, 2020, 12, 17077-17090.	8.0	36
18	Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story. Chemical Communications, 2017, 53, 2744-2747.	4.1	32

Ниімія Luo

#	Article	IF	CITATIONS
19	Compatibility between Various Ionic Liquids and an Organic Friction Modifier as Lubricant Additives. Langmuir, 2018, 34, 10711-10720.	3.5	31
20	New Functionality of Ionic Liquids as Lubricant Additives: Mitigating Rolling Contact Fatigue. ACS Applied Materials & Interfaces, 2019, 11, 30484-30492.	8.0	29
21	Low-Cost Transformation of Biomass-Derived Carbon to High-Performing Nano-graphite via Low-Temperature Electrochemical Graphitization. ACS Applied Materials & Interfaces, 2021, 13, 4393-4401.	8.0	26
22	Tribological Bench and Engine Dynamometer Tests of a Low Viscosity SAE 0W-16 Engine Oil Using a Combination of Ionic Liquid and ZDDP as Anti-Wear Additives. Frontiers in Mechanical Engineering, 2015, 1, .	1.8	20
23	Using Ionic Liquid Additive to Enhance Lubricating Performance for Low-Viscosity Engine Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 7198-7205.	6.7	19
24	Dissolution of the Rareâ€Earth Mineral Bastnaesite by Acidic Amide Ionic Liquid for Recovery of Critical Materials. European Journal of Inorganic Chemistry, 2015, 2015, 4354-4361.	2.0	17
25	Does the Use of Diamondâ€Like Carbon Coating and Organophosphate Lubricant Additive Together Cause Excessive Tribochemical Material Removal?. Advanced Materials Interfaces, 2015, 2, 1500213.	3.7	15
26	Ion-gated carbon molecular sieve gas separation membranes. Journal of Membrane Science, 2020, 604, 118013.	8.2	15
27	lonic Liquid and Silica Sol-Gel Composite Materials Doped with N,N,N′,N′-tetra(<i>n</i> -octyl)diglycolamide for Extraction of La ³⁺ and Ba ²⁺ . Separation Science and Technology, 2012, 47, 244-249.	2.5	14
28	Tandem dissolution of UO ₃ in amide-based acidic ionic liquid and in situ electrodeposition of UO ₂ with regeneration of the ionic liquid: a closed cycle. Dalton Transactions, 2016, 45, 10151-10154.	3.3	14
29	Competitive Adsorption of Lubricant Base Oil and Ionic Liquid Additives at Air/Liquid and Solid/Liquid Interfaces. Langmuir, 2020, 36, 7582-7592.	3.5	14
30	Electrochemically induced crystallization of amorphous materials in molten MgCl ₂ : boron nitride and hard carbon. Chemical Communications, 2020, 56, 2783-2786.	4.1	10
31	Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers. ACS Applied Materials & Interfaces, 2020, 12, 8663-8673.	8.0	9
32	Tuning the Cation–Anion Interactions by Methylation of the Pyridinium Cation: An X-ray Photoelectron Spectroscopy Study of Picolinium Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 6657-6663.	2.6	8
33	Competitive Adsorption of Ionic Liquids Versus Friction Modifier and Anti-Wear Additive at Solid/Lubricant Interface—Speciation with Vibrational Sum Frequency Generation Spectroscopy. Lubricants, 2020, 8, 98.	2.9	8
34	Molten Salt Assisted Low-Temperature Electro-Catalytic Graphitization of Coal Chars. Journal of the Electrochemical Society, 2021, 168, 046504.	2.9	8
35	Wear penalty for steel rubbing against hard coatings in reactive lubricants due to tribochemical interactions. Tribology International, 2021, 160, 107010.	5.9	8
36	X-ray photoelectron spectroscopy of piperidinium ionic liquids: a comparison to the charge delocalised pyridinium analogues. Physical Chemistry Chemical Physics, 2020, 22, 11976-11983.	2.8	7

Ниімія Luo

#	Article	IF	CITATIONS
37	Extraction of Rare Earths in Ionic Liquids <i>Via</i> Competitive Ligand Complexation between TODGA and DTPA. Solvent Extraction and Ion Exchange, 2018, 36, 574-582.	2.0	6
38	Extraction of lanthanides using 1-hydroxy-6-N-octylcarboxamido-2(1H)-pyridinone as an extractant via competitive ligand complexations between aqueous and organic phases. RSC Advances, 2015, 5, 107054-107057.	3.6	4
39	Controlling the elasticity of polyacrylonitrile fibers <i>via</i> ionic liquids containing cyano-based anions. RSC Advances, 2022, 12, 8656-8660.	3.6	2
40	19F NMR study of 1-halo-F-adamantanes. Magnetic Resonance in Chemistry, 1993, 31, 969-971.	1.9	1