


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8061818/publications.pdf Version: 2024-02-01



VACUOLI

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Morphology and distribution of subsurface damage in optical fused silica parts: Bound-abrasive grinding. Applied Surface Science, 2011, 257, 2066-2073.                                                      | 6.1  | 81        |
| 2  | Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher. International Journal of Machine Tools and Manufacture, 2014, 77, 93-102.                                                  | 13.4 | 67        |
| 3  | The characteristics of optics polished with a polyurethane pad. Optics Express, 2008, 16, 10285.                                                                                                             | 3.4  | 43        |
| 4  | A method for evaluating subsurface damage in optical glass. Optics Express, 2010, 18, 17180.                                                                                                                 | 3.4  | 43        |
| 5  | Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes. Optics and Laser Technology, 2017, 91, 149-158.                          | 4.6  | 39        |
| 6  | Laser induced damage characteristics of fused silica optics treated by wet chemical processes. Applied Surface Science, 2015, 357, 498-505.                                                                  | 6.1  | 31        |
| 7  | Tentative investigation towards precision polishing of optical components with ultrasonically vibrating bound-abrasive pellets. Optics Express, 2012, 20, 568.                                               | 3.4  | 28        |
| 8  | Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.<br>Applied Optics, 2016, 55, 3017.                                                                      | 2.1  | 27        |
| 9  | Proposal of a tilted helical milling technique for high-quality hole drilling of CFRP: analysis of hole<br>surface finish. International Journal of Advanced Manufacturing Technology, 2019, 101, 1041-1049. | 3.0  | 24        |
| 10 | Generation of Scratches and Their Effects on Laser Damage Performance of Silica Glass. Scientific<br>Reports, 2016, 6, 34818.                                                                                | 3.3  | 23        |
| 11 | Function of liquid and tool wear in ultrasonic bound-abrasive polishing of fused silica with different polishing tools. Optik, 2014, 125, 4064-4068.                                                         | 2.9  | 22        |
| 12 | 1.6 Precision Grinding, Lapping, Polishing, and Post-Processing of Optical Glass. , 2017, , 154-170.                                                                                                         |      | 22        |
| 13 | Resistance of Scratched Fused Silica Surface to UV Laser Induced Damage. Scientific Reports, 2019, 9, 10741.                                                                                                 | 3.3  | 22        |
| 14 | Phase explosion induced by high-repetition rate pulsed laser. Applied Surface Science, 2010, 256, 6649-6654.                                                                                                 | 6.1  | 19        |
| 15 | Chemo-mechanical manufacturing of fused silica by combining ultrasonic vibration with fixed-abrasive pellets. International Journal of Precision Engineering and Manufacturing, 2012, 13, 2163-2172.         | 2.2  | 17        |
| 16 | Top-hat and Gaussian laser beam smoothing of ground fused silica surface. Optics and Laser<br>Technology, 2020, 127, 106141.                                                                                 | 4.6  | 16        |
| 17 | Laser plasma-induced damage characteristics of Ta <sub>2</sub> O <sub>5</sub> films. Optical<br>Materials Express, 2019, 9, 3132.                                                                            | 3.0  | 16        |
| 18 | Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers.<br>Proceedings of SPIE, 2015, , .                                                                                  | 0.8  | 13        |

Yaguo Li

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ultrasonicâ€assisted wet chemical etching of fused silica for highâ€power laser systems. International<br>Journal of Applied Glass Science, 2018, 9, 288-295.                  | 2.0 | 13        |
| 20 | Surface characteristics of an optical component manufactured with a polyurethane lap. Applied Optics, 2009, 48, 737.                                                           | 2.1 | 12        |
| 21 | Study of morphological feature and mechanism of potassium dihydrogen phosphate surface damage<br>under a 351  nm nanosecond laser. Applied Optics, 2018, 57, 10334.            | 1.8 | 10        |
| 22 | Laser induced damage due to scratches in the surface of nonlinear optical crystals KH2PO4 (KDP).<br>Journal of the European Optical Society-Rapid Publications, 2017, 13, .    | 1.9 | 9         |
| 23 | Effect of scratches on the damage characteristics of fused silica optics under extremely-high impact<br>load. International Journal of Mechanical Sciences, 2022, 219, 107099. | 6.7 | 9         |
| 24 | The ablation of Ta2O5 film by pulsed nanosecond Gaussian laser beams. Optik, 2015, 126, 2327-2330.                                                                             | 2.9 | 8         |
| 25 | Improving UV laser damage threshold of fused silica optics by wet chemical etching technique.<br>Proceedings of SPIE, 2015, , .                                                | 0.8 | 8         |
| 26 | Plasma-based isotropic etching polishing of synthetic quartz. Journal of Manufacturing Processes, 2020, 60, 447-456.                                                           | 5.9 | 8         |
| 27 | The early transient dynamics reaction of KDP surface during nanosecond laser breakdown. AIP<br>Advances, 2019, 9, .                                                            | 1.3 | 7         |
| 28 | Effects of Wet Chemical Etching on Scratch Morphology and Laser Damage Resistance of Fused Silica.<br>Silicon, 2020, 12, 425-432.                                              | 3.3 | 7         |
| 29 | Ultraviolet laser damage properties of single-layer SiO <sub>2</sub> film grown by atomic layer deposition. Optical Materials Express, 2020, 10, 1981.                         | 3.0 | 7         |
| 30 | Energy transmissivity of high-power nanosecond laser pulse focused on glass. Optik, 2010, 121, 2213-2216.                                                                      | 2.9 | 6         |
| 31 | Formation mechanism of bubbles in the crack healing process of fused silica using a CO <sub>2</sub><br>laser. Optics Express, 2021, 29, 32089.                                 | 3.4 | 5         |
| 32 | Effect of laser pulse duration and fluence on DKDP crystal laser conditioning. Applied Optics, 2020, 59, 5240.                                                                 | 1.8 | 5         |
| 33 | Broadband terahertz antireflective microstructures on quartz crystal surface by CO <sub>2</sub><br>laser micro-processing. Optics Express, 2019, 27, 18351.                    | 3.4 | 5         |
| 34 | On the mechanism of multi-pulses induced damage in dielectrics. Optik, 2013, 124, 1528-1531.                                                                                   | 2.9 | 4         |
| 35 | Recent progress in bound-abrasive polishing of fused silica glass. Proceedings of SPIE, 2015, , .                                                                              | 0.8 | 4         |
| 36 | Threshold fluences for conditioning, fatigue and damage effects of DKDP crystals. Optical Materials, 2019, 91, 199-204.                                                        | 3.6 | 4         |

Yaguo Li

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition<br>(RFOIAD) technology. Journal of Applied Physics, 2017, 121, . | 2.5 | 3         |
| 38 | The Surface Layer of Fused Silica Finished by Various Polishing Techniques. , 2010, , .                                                                              |     | 2         |
| 39 | Hybrid polishing of fused silica glass with bound-abrasive polishers in conjunction with vibration. , 2012, , .                                                      |     | 2         |
| 40 | Precision manufacturing of fused silica glass by combining bound-abrasive polishing with ultrasonic vibration. Proceedings of SPIE, 2012, , .                        | 0.8 | 2         |
| 41 | Image processing identification of laser damage induced by ns-pulsed lasers. Optik, 2013, 124, 1940-1942.                                                            | 2.9 | 2         |
| 42 | Investigation of the formation mechanism of the fluorocarbon film in CF4 plasma processing of fused silica. Optik, 2020, 202, 163693.                                | 2.9 | 2         |
| 43 | Elimination of X-rays irradiated defects in fused silica by laser conditioning. Optics Communications, 2021, 483, 126639.                                            | 2.1 | 1         |
| 44 | Broadband absorption coating for large-curvature surfaces by atomic layer deposition. Applied Optics, 2021, 60, 5759.                                                | 1.8 | 1         |
| 45 | Study on IR laser smoothing of ground surface on fused silica. , 2019, , .                                                                                           |     | 1         |
| 46 | Investigation on the influence of the CO2 laser parameters on the defect healing process of fused silica. , 2021, , .                                                |     | 0         |
| 47 | Modeling and analysis of surface roughness in fused silica by CO2 laser smoothing. , 2021, , .                                                                       |     | Ο         |