Lance R Thurlow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8061798/publications.pdf

Version: 2024-02-01

15 papers	1,277 citations	687363 13 h-index	940533 16 g-index
16 all docs	16 docs citations	16 times ranked	2203 citing authors

#	Article	IF	Citations
1	<i>Staphylococcus aureus</i> Biofilms Prevent Macrophage Phagocytosis and Attenuate Inflammation In Vivo. Journal of Immunology, 2011, 186, 6585-6596.	0.8	563
2	Functional Modularity of the Arginine Catabolic Mobile Element Contributes to the Success of USA300 Methicillin-Resistant Staphylococcus aureus. Cell Host and Microbe, 2013, 13, 100-107.	11.0	176
3	Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant <i>Staphylococcus aureus</i> (CA-MRSA). FEMS Immunology and Medical Microbiology, 2012, 65, 5-22.	2.7	138
4	Identification of a Lactate-Quinone Oxidoreductase in Staphylococcus aureus that is Essential for Virulence. Frontiers in Cellular and Infection Microbiology, 2011, 1, 19.	3.9	66
5	Enterococcus faecalis Gelatinase Mediates Intestinal Permeability via Protease-Activated Receptor 2. Infection and Immunity, 2015, 83, 2762-2770.	2.2	62
6	Genetic requirements for Staphylococcus aureus nitric oxide resistance and virulence. PLoS Pathogens, 2018, 14, e1006907.	4.7	62
7	Lack of nutritional immunity in diabetic skin infections promotes <i>Staphylococcus aureus</i> virulence. Science Advances, 2020, 6, .	10.3	39
8	<scp><i>S</i></scp> <i>taphylococcus aureus</i> lactate―and malateâ€quinone oxidoreductases contribute to nitric oxide resistance and virulence. Molecular Microbiology, 2016, 100, 759-773.	2.5	30
9	$\hat{I}^3\hat{I}$ T Cells Play a Protective Role in Chikungunya Virus-Induced Disease. Journal of Virology, 2016, 90, 433-443.	3.4	28
10	Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology. MBio, 2017, 8, .	4.1	28
11	Peroxisome Proliferator-Activated Receptor \hat{I}^3 Is Essential for the Resolution of Staphylococcus aureus Skin Infections. Cell Host and Microbe, 2018, 24, 261-270.e4.	11.0	27
12	Lipopolysaccharide Potentiates Insulin-Driven Hypoglycemic Shock. Journal of Immunology, 2017, 199, 3634-3643.	0.8	24
13	Mammalian target of rapamycin regulates a hyperresponsive state in pulmonary neutrophils late after burn injury. Journal of Leukocyte Biology, 2018, 103, 909-918.	3.3	17
14	Development of humanized mouse and rat models with full-thickness human skin and autologous immune cells. Scientific Reports, 2020, 10, 14598.	3.3	13
15	Mechanisms Behind the Indirect Impact of Metabolic Regulators on Virulence Factor Production in Staphylococcus aureus. Microbiology Spectrum, 2022, 10, .	3.0	3