
Juventino J GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8061747/publications.pdf Version: 2024-02-01

Ιυνεντινό Ι Ολος Δλ

#	Article	IF	CITATIONS
1	Cleavage of Carbonâ^'Carbon Bonds in Aromatic Nitriles Using Nickel(0). Journal of the American Chemical Society, 2002, 124, 9547-9555.	13.7	238
2	Reversible Cleavage of Carbonâ^'Carbon Bonds in Benzonitrile Using Nickel(0). Organometallics, 2000, 19, 5544-5545.	2.3	162
3	Equilibria of the Thiametallacycles with Tris(triethylphosphine)platinum(0) and Dibenzothiophene, Benzothiophene, or Thiophene: The Hydrodesulfurization Reaction. Journal of the American Chemical Society, 1995, 117, 2179-2186.	13.7	138
4	Experimental and Theoretical Examination of Câ^'CN Bond Activation of Benzonitrile Using Zerovalent Nickel. Organometallics, 2008, 27, 3811-3817.	2.3	97
5	Selective <i>N</i> -Methylation of Aliphatic Amines with CO ₂ and Hydrosilanes Using Nickel-Phosphine Catalysts. Organometallics, 2015, 34, 763-769.	2.3	90
6	Hydrogenation of levulinic acid to Î ³ -valerolactone using ruthenium nanoparticles. Inorganica Chimica Acta, 2013, 397, 124-128.	2.4	80
7	Non-Pincer Mn(I) Organometallics for the Selective Catalytic Hydrogenation of Nitriles to Primary Amines. ACS Catalysis, 2019, 9, 392-401.	11.2	72
8	Hydrodesulfurization of dibenzothiophene into biphenyl by tris(triethylphosphine)platinum(0). Journal of the American Chemical Society, 1993, 115, 12200-12201.	13.7	71
9	Nickel-catalyzed transfer hydrogenation of ketones using ethanol as a solvent and a hydrogen donor. Dalton Transactions, 2016, 45, 13604-13614.	3.3	69
10	On the Catalytic Hydrodefluorination of Fluoroaromatics Using Nickel Complexes: The True Role of the Phosphine. Journal of the American Chemical Society, 2014, 136, 4634-4639.	13.7	62
11	Semihydrogenation of alkynes in the presence of Ni(0) catalyst using ammonia-borane and sodium borohydride as hydrogen sources. Applied Catalysis A: General, 2010, 385, 108-113.	4.3	53
12	Stereoselective Hydrogenation of Aromatic Alkynes Using Water, Triethylsilane, or Methanol, Mediated and Catalyzed by Ni(0) Complexes. Inorganic Chemistry, 2009, 48, 386-393.	4.0	51
13	Catalytic hydrogenation of aromatic nitriles and dinitriles with nickel compounds. Applied Catalysis A: General, 2009, 363, 230-234.	4.3	50
14	Ring Opening of Methylbenzothiophenes and Methyldibenzothiophenes by Tris(triethylphosphine)platinum(0). Organometallics, 1999, 18, 1680-1685.	2.3	48
15	Toward Amines, Imines, and Imidazoles: A Viewpoint on the 3d Transition-Metal-Catalyzed Homogeneous Hydrogenation of Nitriles. ACS Catalysis, 2020, 10, 8012-8022.	11.2	46
16	Nickel-Catalyzed Alkylation and Transfer Hydrogenation of α,β-Unsaturated Enones with Methanol. Organometallics, 2012, 31, 680-686.	2.3	44
17	Metal-catalysed Poly(Ethylene) terephthalate and polyurethane degradations by glycolysis. Journal of Organometallic Chemistry, 2019, 902, 120972.	1.8	44
18	Synthesis of pyrrolidones and quinolines from the known biomass feedstock levulinic acid and amines. Tetrahedron Letters. 2016, 57, 766-771.	1.4	41

JUVENTINO J GARCÃA

#	Article	IF	CITATIONS
19	Bond Activation with Lowâ€Valent Nickel in Homogeneous Systems. European Journal of Inorganic Chemistry, 2010, 2010, 4063-4074.	2.0	40
20	Selective hydrogenation of the CO bond of ketones using Ni(0) complexes with a chelating bisphosphine. Journal of Molecular Catalysis A, 2009, 309, 1-11.	4.8	39
21	Reactivity of Substituted Thiophenes toward Tris(triethylphosphine)platinum(0), -palladium(0), and -nickel(0). Organometallics, 2001, 20, 4061-4071.	2.3	37
22	Catalytic Desulfurization of Dibenzothiophene and Its Hindered Analogues with Nickel and Platinum Compounds. Organometallics, 2007, 26, 2228-2233.	2.3	36
23	One-pot synthesis of imidazoles from aromatic nitriles with nickel catalysts. Chemical Communications, 2011, 47, 10121.	4.1	34
24	Catalytic Desulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene with Nickel Compounds. Organometallics, 2004, 23, 4534-4536.	2.3	33
25	Nickel-Catalyzed Reductive Hydroesterification of Styrenes Using CO ₂ and MeOH. Organometallics, 2012, 31, 8200-8207.	2.3	33
26	Manganese atalyzed Transfer Hydrogenation of Nitriles with 2â€Butanol as the Hydrogen Source. ChemCatChem, 2019, 11, 5330-5338.	3.7	31
27	Nickel-Catalyzed Transfer Hydrogenation of Benzonitriles with 2-Propanol and 1,4-Butanediol as the Hydrogen Source. ACS Omega, 2017, 2, 2337-2343.	3.5	28
28	Homogeneous hydrogenation of fluoroaromatic imines with Ni compounds, evidence for η2-CN intermediate in the catalytic cycle. Journal of Molecular Catalysis A, 2009, 298, 51-59.	4.8	23
29	Reduction of CO2 and SO2 with low valent nickel compounds under mild conditions. Dalton Transactions, 2011, 40, 9116.	3.3	22
30	Deoxydesulfurization of sulfones derived from dibenzothiophene using nickel compounds. Journal of Molecular Catalysis A, 2008, 293, 65-71.	4.8	21
31	Nickel(0) Complexes with Fluorinated Alkyne Ligands and their Reactivity towards Semihydrogenation and Hydrodefluorination with Water. Chemistry - an Asian Journal, 2011, 6, 842-849.	3.3	21
32	Facile preparation of ruthenium nanoparticles with activity in hydrogenation of aliphatic and aromatic nitriles to amines. Journal of Physical Organic Chemistry, 2012, 25, 902-907.	1.9	21
33	Easily available nickel complexes as catalysts for the intermolecular hydroamination of alkenes and alkynes. Dalton Transactions, 2014, 43, 1762-1768.	3.3	21
34	Bond and small-molecule activation with low-valent nickel complexes. Dalton Transactions, 2015, 44, 13419-13438.	3.3	20
35	Fluoro aromatic imine nickel(0) complexes: Synthesis and structural studies. Journal of Organometallic Chemistry, 2007, 692, 3498-3507.	1.8	19
36	Synthesis of Low-Valent Nickel Complexes in Aqueous Media, Mechanistic Insights, and Selected Applications. Organometallics, 2014, 33, 6796-6802.	2.3	17

JUVENTINO J GARCÃA

#	Article	IF	CITATIONS
37	Synthesis of tetra-substituted imidazoles and 2-imidazolines by Ni(0)-catalyzed dehydrogenation of benzylic-type imines. Dalton Transactions, 2014, 43, 15997-16005.	3.3	17
38	Catalytic reduction of CO2 with organo-silanes using [Ru3(CO)12]. Journal of Organometallic Chemistry, 2016, 823, 8-13.	1.8	17
39	Hydrogenation and <i>N</i> -alkylation of anilines and imines <i>via</i> transfer hydrogenation with homogeneous nickel compounds. Dalton Transactions, 2019, 48, 17579-17587.	3.3	15
40	A key intermediate in the platinum-mediated hydrodesulfurization of dibenzothiophene. Catalysis Letters, 1998, 51, 129-131.	2.6	14
41	Mild reduction with silanes and reductive amination of levulinic acid using a simple manganese catalyst. Inorganica Chimica Acta, 2021, 516, 120167.	2.4	14
42	Hydrophosphonylation of Alkynes with Trialkyl Phosphites Catalyzed by Nickel. ChemCatChem, 2017, 9, 4125-4131.	3.7	13
43	Catalytic transfer hydrogenation of azobenzene by low-valent nickel complexes: a route to 1,2-disubstituted benzimidazoles and 2,4,5-trisubstituted imidazolines. Dalton Transactions, 2016, 45, 10389-10401.	3.3	11
44	Nickel-catalyzed reduction of ketones with water and triethylsilane. Inorganica Chimica Acta, 2017, 466, 324-332.	2.4	11
45	Nickelâ€Catalyzed Hydrophosphonylation and Hydrogenation of Aromatic Nitriles Assisted by Lewis Acid. ChemCatChem, 2019, 11, 1337-1345.	3.7	11
46	Transfer Hydrogenation of Levulinic Acid to γâ€Valerolactone and Pyrrolidones Using a Homogeneous Nickel Catalyst. European Journal of Inorganic Chemistry, 2021, 2021, 445-450.	2.0	11
47	Synthesis of $\hat{1}\pm$ -pyrones by catalytic oxidative coupling of terminal alkynes and carbon dioxide. Journal of Organometallic Chemistry, 2017, 831, 18-22.	1.8	10
48	Iron Catalyzed CO2 Activation with Organosilanes. Catalysis Letters, 2018, 148, 1162-1168.	2.6	10
49	Tandem hydrogenation and condensation of fluorinated $\hat{1}\pm,\hat{1}^2$ -unsaturated ketones with primary amines, catalyzed by nickel. Dalton Transactions, 2015, 44, 15653-15663.	3.3	9
50	Mn(<scp>i</scp>) organometallics containing the ⁱ Pr ₂ P(CH ₂) ₂ P ⁱ Pr ₂ ligand for the catalytic hydration of aromatic nitriles. Catalysis Science and Technology, 2018, 8, 2606-2616.	4.1	9
51	Hydrodefluorination of functionalized fluoroaromatics with triethylphosphine: a theoretical and experimental study. New Journal of Chemistry, 2019, 43, 6897-6908.	2.8	9
52	Manganese-catalyzed transfer semihydrogenation of internal alkynes to <i>E</i> -alkenes with iPrOH as hydrogen source. Catalysis Science and Technology, 2022, 12, 3004-3015.	4.1	9
53	Nickel(<scp>ii</scp>) and nickel(0) complexes as precursors of nickel nanoparticles for the catalytic hydrogenation of benzonitrile. New Journal of Chemistry, 2020, 44, 1082-1089.	2.8	8
54	Catalytic CO2 hydrosilylation with [Mn(CO)5Br] under mild reaction conditions. Polyhedron, 2021, 203, 115242.	2.2	8

JUVENTINO J GARCÃA

0

#	Article	IF	CITATIONS
55	Mononuclear and Tetranuclear Copper(II) Complexes Bearing Amino Acid Schiff Base Ligands: Structural Characterization and Catalytic Applications. Molecules, 2021, 26, 7301.	3.8	7
56	Furfural and 5-(hydroxymethyl)furfural valorization using homogeneous Ni(0) and Ni(II) catalysts by transfer hydrogenation. Journal of Organometallic Chemistry, 2022, 957, 122162.	1.8	5
57	Desulfurization of dibenzothiophene and dibenzothiophene sulfone via Suzuki–Miyaura type reaction: Direct access to o-terphenyls and polyphenyl derivatives. Polyhedron, 2018, 154, 373-381.	2.2	2
58	Electrochemical activation of CO ₂ by MOF-(Fe, Ni, Mn) derivatives of 5-aminoisophthalic acid and the thiazole group influence on its catalytic activity. New Journal of Chemistry, 2022, 46, 6060-6067.	2.8	1
59	[1,2-Bis(diisopropylphosphanyl)ethane-ΰ ² <i>P</i> , <i>P</i> ′](2-fluoro- <i>N</i> {[(2-fluorophenyl)azanidyl]carbonyl}anilinido-ΰ ²) Tj ETQq1	1 0. 3843	14ogBT /Over

60 Zerovalent Nickel Organometallic Complexes. , 2021, , .