Takashi Yokoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8061546/publications.pdf

Version: 2024-02-01

142 papers 2,734 citations

218677 26 h-index 223800 46 g-index

144 all docs

144 docs citations

times ranked

144

2802 citing authors

#	Article	IF	CITATIONS
1	Semiquantitative assessed proteinuria and risk of heart failure: analysis of a nationwide epidemiological database. Nephrology Dialysis Transplantation, 2022, 37, 1691-1699.	0.7	12
2	Incorporation of Retinal Arteriolosclerosis into Risk Stratification of Blood Pressure Category According to the 2017 ACC/AHA Blood Pressure Guideline. Journal of Atherosclerosis and Thrombosis, 2022, 29, 1487-1498.	2.0	2
3	Generation of heterozygous PKD1 mutant pigs exhibiting early-onset renal cyst formation. Laboratory Investigation, 2022, 102, 560-569.	3.7	11
4	Chronic Kidney Disease Patients Visiting Various Hospital Departments: An Analysis in a Hospital in Central Tokyo, Japan. Journal of Personalized Medicine, 2022, 12, 39.	2.5	3
5	Risk for Proteinuria in Newly Defined Hypertensive People Based on the 2017 American College of Cardiology/American Heart Association Blood Pressure Guideline. American Journal of Cardiology, 2022, 168, 83-89.	1.6	2
6	A Novel Method for Urinary Tract Reconstruction in Transplanted Embryonic Kidneys Using the Hybrid Stent: A Pig Study. Transplantation Direct, 2022, 8, e1293.	1.6	1
7	Change in Cardiovascular Health Metrics and Risk for Proteinuria Development: Analysis of a Nationwide Population-Based Database. American Journal of Nephrology, 2022, 53, 240-248.	3.1	8
8	In Vivo Development of Fetal Pig Kidneys in Mature Monkeys under Clinically Approved Immunosuppressant Drugs. Engineering, 2022, 10, 65-73.	6.7	5
9	Beneficial Impact of Interspecies Chimeric Renal Organoids Against a Xenogeneic Immune Response. Frontiers in Immunology, 2022, 13, 848433.	4.8	6
10	Association between proteinuria and incident colorectal cancer: analysis of a nationwide population-based database. BMJ Open, 2022, 12, e056250.	1.9	5
11	IgA nephropathy with glomerular capillary IgA deposition following SARS-CoV-2 mRNA vaccination: a report of three cases. CEN Case Reports, 2022, 11, 499-505.	0.9	9
12	Medication-NaÃ-ve Blood Pressure and Incident Cancers: Analysis of 2 Nationwide Population-Based Databases. American Journal of Hypertension, 2022, 35, 731-739.	2.0	3
13	Different Clinical Courses of Nephronophthisis in Dizygotic Twins. Internal Medicine, 2022, , .	0.7	O
14	Generation of functional chimeric kidney containing exogenous progenitor-derived stroma and nephron via a conditional empty niche. Cell Reports, 2022, 39, 110933.	6.4	12
15	New Concept of Onco-Hypertension and Future Perspectives. Hypertension, 2021, 77, 16-27.	2.7	46
16	Impact of the number of steroid pulses in tonsillectomy combined with steroid pulse therapy: a nationwide retrospective study in Japan. Clinical and Experimental Nephrology, 2021, 25, 19-27.	1.6	4
17	Techniques of orthotopic renal transplantation. II. Size-matched porcine grafts in monkey recipients. Acta Cirurgica Brasileira, 2021, 36, e360503.	0.7	4
18	Timing urinary tract reconstruction in rats to avoid hydronephrosis and fibrosis in the transplanted fetal metanephros as assessed using imaging. PLoS ONE, 2021, 16, e0231233.	2.5	1

#	Article	IF	Citations
19	InÂvivo regeneration of neo-nephrons in rodents by renal progenitor cell transplantation. STAR Protocols, 2021, 2, 100314.	1.2	4
20	Association Between Blood Pressure Classification Using the 2017 ACC/AHA Blood Pressure Guideline and Retinal Atherosclerosis. American Journal of Hypertension, 2021, 34, 1049-1056.	2.0	11
21	Indirect podocyte injury manifested in a partial podocytectomy mouse model. American Journal of Physiology - Renal Physiology, 2021, 320, F922-F933.	2.7	9
22	Techniques of orthotopic renal transplantation in pigs. One donor to two recipients via inverted grafting. Acta Cirurgica Brasileira, 2021, 36, e360208.	0.7	5
23	Stem cell sheet therapy: another option for acute kidney injury?. Kidney International, 2021, 99, 22-24.	5.2	2
24	Transplantation of Vulnerable Renal Organoids by Use of a Novel Laparoscopic Device in Pigs. Transplantation Direct, 2021, 7, e777.	1.6	3
25	Role and Treatment of Insulin Resistance in Patients with Chronic Kidney Disease: A Review. Nutrients, 2021, 13, 4349.	4.1	17
26	Techniques of fragile renal organoids transplantation in mice. Acta Cirurgica Brasileira, 2021, 36, e361102.	0.7	5
27	Generation of Human Renal Vesicles in Mouse Organ Niche Using Nephron Progenitor Cell Replacement System. Cell Reports, 2020, 32, 108130.	6.4	28
28	Xenoâ€regenerative medicine: A novel concept for donor kidney fabrication. Xenotransplantation, 2020, 27, e12622.	2.8	16
29	Dysfunctional ABCG2 gene polymorphisms are associated with serum uric acid levels and all-cause mortality in hemodialysis patients. Human Cell, 2020, 33, 559-568.	2.7	7
30	Renal sympathetic nerve activity regulates cardiovascular energy expenditure in rats fed high salt. Hypertension Research, 2020, 43, 482-491.	2.7	23
31	Xenotransplanted Embryonic Kidney. , 2020, , 383-396.		0
32	FP044REGENERATION OF INTERSPECIES CHIMERIC KIDNEYS USING TAMOXIFEN-INDUCED NEPHRON PROGENITOR CELL ELIMINATION SYSTEM. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
33	Mesangial cell regeneration from exogenous stromal progenitor by utilizing embryonic kidney. Biochemical and Biophysical Research Communications, 2019, 520, 627-633.	2.1	10
34	New measures against chronic kidney diseases in Japan since 2018. Clinical and Experimental Nephrology, 2019, 23, 1263-1271.	1.6	17
35	Gcm2 regulates the maintenance of parathyroid cells in adult mice. PLoS ONE, 2019, 14, e0210662.	2.5	28
36	Association Between Tonsillectomy and Outcomes in Patients With Immunoglobulin A Nephropathy. JAMA Network Open, 2019, 2, e194772.	5.9	59

#	Article	IF	CITATIONS
37	Gcm1 is involved in cell proliferation and fibrosis during kidney regeneration after ischemia–reperfusion injury. Scientific Reports, 2019, 9, 7883.	3.3	10
38	In vivo regeneration of interspecies chimeric kidneys using a nephron progenitor cell replacement system. Scientific Reports, 2019, 9, 6965.	3.3	18
39	Negative impact of proteinuria on circulating myeloid dendritic cells. Clinical and Experimental Nephrology, 2019, 23, 928-938.	1.6	0
40	Kidney Regeneration in Later-Stage Mouse Embryos via Transplanted Renal Progenitor Cells. Journal of the American Society of Nephrology: JASN, 2019, 30, 2293-2305.	6.1	9
41	A grading system that predicts the risk of dialysis induction in IgA nephropathy patients based on the combination of the clinical and histological severity. Clinical and Experimental Nephrology, 2019, 23, 16-25.	1.6	18
42	Optimal route of diphtheria toxin administration to eliminate native nephron progenitor cells inÂvivo for kidney regeneration. Biochemical and Biophysical Research Communications, 2018, 496, 1176-1182.	2.1	5
43	Interventional nephrology: current status and clinical impact in Japan. Clinical and Experimental Nephrology, 2018, 22, 437-447.	1.6	9
44	SuO020OPTIMAL ROUTE OF DIPHTHERIA TOXIN ADMINISTRATION TO ELIMINATE NATIVE NEPHRON PROGENITOR CELLS IN VIVO FOR KIDNEY REGENERATION. Nephrology Dialysis Transplantation, 2018, 33, i623-i624.	0.7	0
45	Regenerative potential of induced pluripotent stem cells derived from patients undergoing haemodialysis in kidney regeneration. Scientific Reports, 2018, 8, 14919.	3.3	28
46	Clinicopathological features and outcomes of kidney allografts in plasma cellâ€rich acute rejection: A case series. Nephrology, 2018, 23, 22-26.	1.6	7
47	Association between resistin and fibroblast growth factor 23 in patients with type 2 diabetes mellitus. Scientific Reports, 2018, 8, 13999.	3.3	16
48	Detrimental Effects of Centrally Administered Angiotensin II are Enhanced in a Mouse Model of Alzheimer Disease Independently of ABlood Pressure. Journal of the American Heart Association, 2017, 6,	3.7	25
49	Effectiveness of a fixed combination formula of ombitasvir/paritaprevir/ritonavir for hepatitis C virus infection in patients on maintenance haemodialysis. Nephrology, 2017, 22, 562-565.	1.6	11
50	Successful long-term effects of direct renin inhibitor aliskiren in a patient with atherosclerotic renovascular hypertension. CEN Case Reports, 2017, 6, 66-73.	0.9	3
51	Glomerular Density and Volume in Renal Biopsy Specimens of Children with Proteinuria Relative to Preterm Birth and Gestational Age. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 585-590.	4.5	47
52	GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Annals of the Rheumatic Diseases, 2017, 76, 869-877.	0.9	114
53	Effect of adipose-derived mesenchymal stem cell transplantation on vascular calcification in rats with adenine-induced kidney disease. Scientific Reports, 2017, 7, 14036.	3.3	13
54	Associations Between Low Serum Testosterone and All-Cause Mortality and Infection-Related Hospitalization in Male Hemodialysis Patients: A Prospective Cohort Study. Kidney International Reports, 2017, 2, 1160-1168.	0.8	22

#	Article	IF	CITATIONS
55	Generation of interspecies limited chimeric nephrons using a conditional nephron progenitor cell replacement system. Nature Communications, 2017, 8, 1719.	12.8	51
56	Usefulness of combination therapy with Daclatasvir plus Asunaprevir in chronic hepatitis C patients with chronic kidney disease. Clinical and Experimental Nephrology, 2017, 21, 818-824.	1.6	5
57	Risk factors for encapsulating peritoneal sclerosis: Analysis of a 36â€year experience in a University Hospital. Nephrology, 2017, 22, 907-912.	1.6	14
58	Embryonic kidney function in a chronic renal failure model in rodents. Clinical and Experimental Nephrology, 2017, 21, 579-588.	1.6	10
59	Pneumothorax Secondary to Septic Pulmonary Emboli in a Long-term Hemodialysis Patient with Psoas Abscess. Internal Medicine, 2017, 56, 3243-3247.	0.7	12
60	Embryonic Organoid Transplantation. , 2017, , 1163-1166.		0
61	Use of the Nephrogenic Niche in Xeno-Embryos for Kidney Regeneration. , 2016, , 521-529.		0
62	Role of vitamin D in diabetes mellitus and chronic kidney disease. World Journal of Diabetes, 2016, 7, 89.	3.5	101
63	Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clinical and Experimental Nephrology, 2016, 20, 731-739.	1.6	85
64	Intra-arterial catheter system to repeatedly deliver mesenchymal stem cells in a rat renal failure model. Clinical and Experimental Nephrology, 2016, 20, 169-177.	1.6	7
65	Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 1400-1411.	6.1	51
66	Tonsillectomy reduces recurrence of IgA nephropathy in mesangial hypercellularity type categorized by the Oxford classification. Clinical and Experimental Nephrology, 2016, 20, 425-432.	1.6	17
67	Hyperuricemia as a risk factor for the development of hypertension and chronic kidney disease - An 8year follow-up study - . Gout and Nucleic Acid Metabolism, 2016, 40, 33-46.	0.0	1
68	Generation of a Felinized Swine Endothelial Cell Line by Expression of Feline Decay-Accelerating Factor. PLoS ONE, 2015, 10, e0117682.	2.5	1
69	Current Bioengineering Methods for Whole Kidney Regeneration. Stem Cells International, 2015, 2015, 1-10.	2.5	23
70	Renal Stem Cells, Tissue Regeneration, and Stem Cell Therapies for Renal Diseases. Stem Cells International, 2015, 2015, 1-2.	2.5	7
71	Serum uric acid and the incidence of CKD and hypertension. Clinical and Experimental Nephrology, 2015, 19, 1127-1134.	1.6	35
72	Ambulatory blood pressure and tubulointerstitial injury in patients with IgA nephropathy. CKJ: Clinical Kidney Journal, 2015, 8, 716-721.	2.9	4

#	Article	IF	CITATIONS
73	Homozygous deletions of UGT2B17 modifies effects of smoking on TP53-mutations and relapse of head and neck carcinoma. BMC Cancer, 2015, 15, 205.	2.6	11
74	Kidney regeneration using developing xenoembryo. Current Opinion in Organ Transplantation, 2015, 20, 160-164.	1.6	5
75	Urine excretion strategy for stem cell-generated embryonic kidneys. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12980-12985.	7.1	66
76	Possible prevention of dialysis-requiring congestive heart failure by angiotensin-II receptor blockers in non-dialysis Japanese patients with Stage 5 chronic kidney disease. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 1175-1184.	1.7	6
77	Does bone structure accurately reflect serum FGF23 levels in patients with chronic kidney disease?. Kidney International, 2015, 88, 640.	5.2	1
78	The Different Association between Serum Ferritin and Mortality in Hemodialysis and Peritoneal Dialysis Patients Using Japanese Nationwide Dialysis Registry. PLoS ONE, 2015, 10, e0143430.	2.5	27
79	Proton Pump Inhibitor Use and Magnesium Concentrations in Hemodialysis Patients: A Cross-Sectional Study. PLoS ONE, 2015, 10, e0143656.	2.5	36
80	Tuberculosis of the Chest Wall Mimicking Breast Cancer. The Journal of the Japanese Society of Internal Medicine, 2015, 104, 2571-2575.	0.0	1
81	A multicenter randomized controlled trial of tonsillectomy combined with steroid pulse therapy in patients with immunoglobulin A nephropathy. Nephrology Dialysis Transplantation, 2014, 29, 1546-1553.	0.7	149
82	Kidney Regeneration with Stem Cells: An Overview. Nephron Experimental Nephrology, 2014, 126, 54-58.	2.2	7
83	Comparison of multipotency and molecular profile of MSCs between CKD and healthy rats. Human Cell, 2014, 27, 59-67.	2.7	22
84	Impact of ExÂVivo Administration of Mesenchymal Stem Cells on the Function of Kidney Grafts From Cardiac Death Donors in Rat. Transplantation Proceedings, 2014, 46, 1578-1584.	0.6	25
85	Adipose Tissue-Derived Mesenchymal Stem Cells in Long-Term Dialysis Patients Display Downregulation of PCAF Expression and Poor Angiogenesis Activation. PLoS ONE, 2014, 9, e102311.	2.5	37
86	Organogenesis for kidney regeneration. Current Opinion in Organ Transplantation, 2013, 18, 186-190.	1.6	13
87	臨床応用ã«åŧāŧāŸè…Žè‡"å†ç"Ÿç"ç©¶ —第58å›žæ—¥æœ¬é€æžåŒ»å¦ ä⅓šæ•™è,²è¬›æ⅓"ã,^ã,Šâ€". Niho	on ōa seki	lgadakai Zassh
88	De NovoKidney Regeneration with Stem Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	15
89	Stem Cells in Kidney Regeneration. Current Medicinal Chemistry, 2012, 19, 6009-6017.	2.4	3
90	The effect of metanephros transplantation on blood pressure in anephric rats with induced acute hypotension. Nephrology Dialysis Transplantation, 2012, 27, 3449-3455.	0.7	33

#	Article	IF	Citations
91	A Simplified in Vitro Teratoma Assay for Pluripotent Stem Cells Injected into Rodent Fetal Organs. Cell Medicine, 2012, 3, 103-112.	5.0	9
92	Metanephros Transplantation Inhibits the Progression of Vascular Calcification in Rats with Adenine-Induced Renal Failure. Nephron Experimental Nephrology, 2012, 120, e32-e40.	2.2	17
93	Xenotransplanted Embryonic Kidney Provides a Niche for Endogenous Mesenchymal Stem Cell Differentiation into Erythropoietin-Producing Tissue. Stem Cells, 2012, 30, 1228-1235.	3.2	46
94	Functional development of a transplanted embryonic kidney: effect of transplantation site. Journal of Nephrology, 2012, 25, 50-55.	2.0	29
95	Potential Use of Stem Cells for Kidney Regeneration. International Journal of Nephrology, 2011, 2011, 1-9.	1.3	11
96	Stem Cell Therapy Against Oxidative Stress and Hypoxia., 2011,, 673-687.		0
97	9C-17 Development of mesenchymal stem cell injection device. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2011, 2010.23, 511-512.	0.0	0
98	9C-16 Research of localized injection treatment and control technology for Rat-embyo. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2011, 2010.23, 509-510.	0.0	0
99	A Thermoreversible Polymer Mediates Controlled Release of Glial Cell Lineâ€Derived Neurotrophic Factor to Enhance Kidney Regeneration. Artificial Organs, 2010, 34, 642-647.	1.9	19
100	Integration of human mesenchymal stem cells into the Wolffian duct in chicken embryos. Biochemical and Biophysical Research Communications, 2009, 385, 330-335.	2.1	20
101	Renal Stem Cells and Kidney Regeneration. , 2009, , 379-390.		0
102	Xenobiotic kidney organogenesis: a new avenue for renal transplantation. Journal of Nephrology, 2009, 22, 312-7.	2.0	5
103	Kidney regeneration by xeno-embryonic nephrogenesis. Medical Molecular Morphology, 2008, 41, 5-13.	1.0	5
104	Kidney organogenesis and regeneration: a new era in the treatment of chronic renal failure?. Clinical and Experimental Nephrology, 2008, 12, 326-331.	1.6	19
105	Generation of a Transplantable Erythropoietin-Producer Derived From Human Mesenchymal Stem Cells. Transplantation, 2008, 85, 1654-1658.	1.0	54
106	Stem cells for kidney repair: useful tool for acute renal failure?. Kidney International, 2008, 74, 847-849.	5.2	27
107	Stem cells and kidney organogenesis. Frontiers in Bioscience - Landmark, 2008, 13, 2814.	3.0	13
108	Application of Regenerative Medicine for Kidney Diseases. Organogenesis, 2007, 3, 34-43.	1.2	9

#	Article	IF	CITATIONS
109	Emphysematous cystitis complication in a patient undergoing hemodialysis. Clinical and Experimental Nephrology, $2007,11,247-250.$	1.6	9
110	Xenobiotic Kidney Organogenesis from Human Mesenchymal Stem Cells Using a Growing Rodent Embryo. Journal of the American Society of Nephrology: JASN, 2006, 17, 1026-1034.	6.1	129
111	Inhibition of endogenous BMP in the glomerulus leads to mesangial matrix expansion. Biochemical and Biophysical Research Communications, 2006, 340, 681-688.	2.1	21
112	A role of BMP in the development of glomerular sclerosis. Nephrology, 2005, 10, A444-A444.	1.6	1
113	Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3296-3300.	7.1	216
114	Prognostic impact of widened peritubular capillaries associated with compensatory tubular hypertrophy in advanced IgA nephropathy. Nephrology, 2004, 9, A52-A52.	1.6	0
115	Gene delivery using human cord blood–derived CD34+cells into inflamed glomeruli in NOD/SCID mice. Kidney International, 2003, 64, 102-109.	5.2	10
116	Effect of steroid therapy on mesangial expression of alpha smooth muscle actin in IgA nephropathy patients. Nephrology, 2003, 8, A112-A112.	1.6	0
117	Stem Cell Gene Therapy for Chronic Renal Failure. Current Gene Therapy, 2003, 3, 387-394.	2.0	16
118	Inflamed site-specific delivery of bone marrow-derived cells carrying IL-1Ra. Nephrology Dialysis Transplantation, 2002, 17, 91-93.	0.7	0
119	Gene therapy for glomerulonephritis using bone marrow stem cells. Clinical and Experimental Nephrology, 2002, 6, 190-194.	1.6	1
120	Use of genetically modified bone marrow-derived vehicle cells to deliver anti-inflammatory cytokines to inflamed interstitium. Nephrology, 2002, 7, A115-A115.	1.6	0
121	Use of genetically modified bone marrowâ€derived vehicle cells to deliver antiâ€inflmamatory cytokines to inflamed interstitium. Nephrology, 2002, 7, A115.	1.6	0
122	Genetically modified bone marrow continuously supplies anti-inflammatory cells and suppresses renal injury in mouse Goodpasture syndrome. Blood, 2001, 98, 57-64.	1.4	46
123	Transplantation-Based Gene Therapy for Inflammatory Diseases Focus on Glomerulonephritis. Current Gene Therapy, 2001, 1, 227-235.	2.0	3
124	Genetically Modified Bone Marrow-Derived Vehicle Cells Site Specifically Deliver an Anti-Inflammatory Cytokine to Inflamed Interstitium of Obstructive Nephropathy. Journal of Immunology, 2001, 166, 609-616.	0.8	67
125	Inflamed Glomeruliâ€"Specific Gene Activation that Uses Recombinant Adenovirus with the Cre/loxP System. Journal of the American Society of Nephrology: JASN, 2001, 12, 2330-2337.	6.1	12
126	The role of osteopontin expression in proximal tubular cells in the long-term prognosis of IgA nephropathy. Nephrology, 2000, 5, A15-A15.	1.6	0

#	Article	IF	Citations
127	Treatment of IgA nephropathy using novel therapeutic strategy: Inflamed site specific gene delivery. Nephrology, 2000, 5, A27-A27.	1.6	O
128	Anti-GBM glomerulonephritis in mice lacking IL- $\hat{l^2}$ -converting enzyme (ICE). Clinical and Experimental Nephrology, 2000, 4, 114-118.	1.6	2
129	Reduction of lysosomal storage in murine mucopolysaccharidosis type VII by transplantation of normal and genetically modified macrophages. Blood, 2000, 95, 3631-3633.	1.4	26
130	Reduction of lysosomal storage in murine mucopolysaccharidosis type VII by transplantation of normal and genetically modified macrophages. Blood, 2000, 95, 3631-3633.	1.4	2
131	Prophylaxis of Antibody-Induced Acute Glomerulonephritis with Genetically Modified Bone Marrow-Derived Vehicle Cells. Human Gene Therapy, 1999, 10, 2673-2678.	2.7	51
132	Corticosteroid therapy modulates the renal histological changes that predict the progression of IgA nephropathy. Nephrology, 1998, 4, A38-A38.	1.6	0
133	Inflamed Site-Specific Gene Delivery Using Bone Marrow-Derived CD11b ⁺ CD18 ⁺ Vehicle Cells in Mice. Human Gene Therapy, 1998, 9, 1731-1738.	2.7	29
134	Unexpected protection of glomerular mesangial cells from oxidant-triggered apoptosis by bioflavonoid quercetin. American Journal of Physiology - Renal Physiology, 1997, 273, F206-F212.	2.7	17
135	IL-1beta depresses expression of the 70-kilodalton heat shock protein and sensitizes glomerular cells to oxidant-initiated apoptosis. Journal of Immunology, 1997, 159, 2886-92.	0.8	27
136	Heat shock proteins in the kidney. Experimental Nephrology, 1997, 5, 439-44.	0.4	1
137	Gene Transfer of Interleukin-1 Receptor Antagonist into the Renal Glomerulus via a Mesangial Cell Vector. Biochemical and Biophysical Research Communications, 1996, 226, 883-888.	2.1	17
138	Antioxidant PDTC induces stromelysin expression in mesangial cells via a tyrosine kinase-AP-1 pathway. American Journal of Physiology - Renal Physiology, 1996, 270, F806-F811.	2.7	12
139	Dual regulation of IL-1 beta-mediated matrix metalloproteinase-9 expression in mesangial cells by NF-kappa B and AP-1. American Journal of Physiology - Renal Physiology, 1996, 270, F123-F130.	2.7	87
140	Macrophage-colony stimulating factor (M-CSF) enhances proteinuria and recruitment of macrophages into the glomerulus in experimental murine nephritis. Clinical and Experimental Immunology, 1996, 106, 286-296.	2.6	21
141	Opposite, binary regulatory pathways involved in IL-1-mediated stromelysin gene expression in rat mesangial cells. Kidney International, 1996, 50, 894-901.	5. 2	14
142	A Novel Strategy for Xeno-Regenerative Therapy. , 0, , .		0